Библиотека >> Онтологические проблемы референции.

Скачать 248.02 Кбайт
Онтологические проблемы референции.

Как он считает в противоположность распространенному мнению, отрицательные результаты Тарского — хотя они и правильны — не закрывают проблему, а те следствия, которые им принято приписывать, весьма дискуссионны. Неопределимость таких металогических понятий как истина, валидность (истинность во всех моделях) и логическое следование на первопорядковом уровне показывает, что обычная первопорядковая логика в некотором важном смысле не является самодостаточной. Отсюда проясняется несогласие Хинтикки с предложением Фреге считать первопорядковые кванторы предикатами второго порядка (предикатами одноместных предикатов), которые сообщают, является ли данный предикат пустым или непустым, допускающим исключения или нет и т.д. Здесь игнорируется тот факт, что кванторы могут быть приписаны к сложным предикатам или простым более чем одноместным. Вопрос в том, является ли наша семантическая игра игрой с полной информацией. Позиция Фреге содержит утвердительный ответ, однако такой ответ не учитывал бы различие между дескриптивной и дедуктивной функциями логики.

По мнению Хинтикки, когда мы говорим о логике первого порядка, что она — кванторная, то этим сказано еще не все: логика первого порядка не есть логика кванторов, которые берутся сами по себе; это — логика зависимых кванторов. Зависимость иллюстрируется такими предложениями, как

(1) >х>у S[х, у],

где значение у зависит от значения х. Фрегеанская же интерпретация кванторов как предикатов высшего порядка не может должным образом семантически объяснить предложение, подобное (1). Более того, это общее пренебрежение к идее зависимости кванторов привело Фреге к ошибке особого рода: в формулировке своих правил образования предложения он исключил некоторые вполне возможные (интерпретируемые) варианты зависимости и независимости между кванторами. Простейшая несводимая кванторная приставка, которую Фреге непреднамеренно исключил — это квантор Генкина, представимый ветвящейся структурой:

 >х>у

(2) S[х, у, z, u]

 > z> u

Однако для вывода одного квантора из области действия другого более удобно использовать линейную символику. Например, (2) может быть записано, как

(3) >х> zу / > z) u / >х) S[х, у, z, u],

где / — отношение независимости.

Систематическое использование линейной символики (отношения независимости, его обращения и соответствующих истинностных предикатов) порождает то, что Хинтикка называет независимо-дружественной или допускающей независимость ( independence- friendly — IF) логикой первого порядка. Это сильное расширение обычной первопорядковой логики, позволяющее независимость там, где принятая запись Фреге—Рассела запрещает ее.

По мнению Хинтикки, IF-логика более адекватна в роли подлинно базисной или элементарной логики, чем классическая первопорядковая, поскольку IF-логика не привлекает идей, которые бы уже не предполагались обычной первопорядковой логикой. Единственное явное новшество, которое следует уяснить для понимания IF-логики text-transform:uppercase'> первого порядка — это идея кванторной независимости. Но понять независимость — это значит понять зависимость, что необходимо для понимания обычной первопорядковой логики. При этом среди особенностей первопорядковых языков для IF-логики есть тот факт, что если включить в такой язык определенные средства говорить в нем самом о его синтаксисе, то можно дать полное определение истины для этого языка в нем самом. Этот результат представляет проблему определимости истины в новом свете и лишает негативный результат Тарского его философского значения. Он показывает, что предпосылки теоремы Тарского столь ограничительны, что она не применима даже к самым основным логическим языкам, которые только можно вообразить.

Определимость истины в IF-языках первого порядка есть фактически доказательство того, что тезис о невыразимости неверен и что в действительности можно обсуждать семантику языка в нем самом. Результаты, подобные тем, что получил Тарский, фактически составляют твердое ядро любого рационального основания для общего тезиса о невыразимости, но более тщательный анализ ситуации ведет к заключению, диаметрально противоположному тому, что, как обычно считают, следует из результатов Тарского. Все философское значение теорем о неполноте и неопределимости следует, по мнению Хинтикки, переоценить, поскольку он показал, что результаты Тарского не имеют тех негативных философских следствий, которые им первоначально приписывали и которые у них обычно подразумевают.

В итоге, с учетом аргументов Филда и Хинтикки, попытка выполнения Тарским требования онтологической нейтральности может вызвать следующие комментарии. Если я реалист, то для меня возможность утверждать снег бел может не означать, что это предложение вообще как-то относится к моему понятию истины, а когда я утверждаю или отрицаю пр


Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152