Библиотека >> Львовско-виршивския фалософския школи (1895-1939)

Скачать 312.37 Кбайт
Львовско-виршивския фалософския школи (1895-1939)

При этом оказывается, что из аксиом общей теории следования и определения L = Cn(0) можно вывести аксиомы исчисления логических систем. Таким образом, обе версии метаматематики эквивалентны, но Тарский считает исчисление систем интуитивно более прозрачным. Тот факт, что логика определяется как множество следствий пустого множества посылок, т.е. общей части всех логических систем подтверждает интуитивные соображения, что логика инвариантна относительно "содержания". Вместе с тем такое определение логики служит также иллюстрацией высказанного выше тезиса о том, что в ней процесс (вывода) = результату, под которым следует понимать логическую форму без какого-либо номиналистического субстрата в духе радикального номинализма, например, Лесьневского. Как кажется, именно так и понимал логику Лукасевич, правда, несколько акцентируя логический процесс как необходимый. Тарский, сотрудничая с обоими основателями варшавской логической школы, более упор делал на результате, нежели на самом логическом процессе. Возможно поэтому им был поставлен вопрос: возможна ли алгебра систем? Оказалось, что этот результат получить можно, если определить сумму систем и их дополнение. Однако такая алгебра не изоморфна алгебре Буля, или же алгебре множеств, являющихся интерпретациями исчисления высказываний. Алгебра систем оказалась изоморфной алгебре Буля, которая служит моделью интуиционистского исчисления высказываний и, в частности, она не содержит закона исключенного среднего. Этот неожиданный результат можно представить следующим образом: отношение между алгеброй множеств и алгеброй систем подобно отношению между классическим и интуиционистским исчислением высказываний.


§ 2. Теория истинности А.Тарского.


Семантическая теория истинности является наиболее выдающимся достижением школы не только в области логики, но прежде всего в философии. В определенном, философском смысле, о котором будет сказано ниже, определение истинности является также и завершением семантических исследований в школе, ибо генерализация этого определения касается только формализованных языков, семантика которых определяется понятием модели, а это последнее есть ничто иное, как математическая структура. Таким образом, нет ничего удивительного в том, что Тарский, будучи математиком, к математике же и редуцировал определение истинного предложения: только в ней понятие истины оказалось универсальным, тогда как в естественных языках оно частично. В продолжение этой редукции выявился ряд вопросов семантики, имеющих прежде всего философское значение в виде соотношения двух упомянутых выше парадигм - философии имени и философии предложения. Однако прежде, чем обсуждать определение истинности, данное Тарским [1933], последуем вслед за ним с тем, чтобы подробно проследить мотивы, которым он руководствовался, создавая эту конструкцию логической семантики.

В первые десятилетия ХХ ст. семантические понятия (истины, обозначения, определения, выполнения и т.п.) воспринимались с подозрением, поскольку рассуждения с их использованием часто приводили к антиномиям, например, лжеца (Эвбулида), антиномии, использующей выражение "гетерологический" (Греллинга-Нельсона) или определимости при помощи ограниченного числа слов (Ришара). В результате сложившегося положения ученые стремились избегать вопросов семантики и не выходить за границы синтаксиса в своих исследованиях. Полученные же в области семантики результаты были сформулированы в неточных понятиях, используемых часто интуитивно. Поэтому необходимость создания теории семантики как точной дисциплины ощущалась весьма остро. Тот факт, что такая теория возникла в Варшаве неудивителен, поскольку главным ее инструментом стало разделение языка-объекта и метаязыка, введенное implicite Лесьневским. Более того, не только инструмент был предложен Лесьневским, но и само поле исследований было в значительной мере им подготовлено. Об этом свидетельствует одно из первых примечаний Тарского к работе "Понятие истины в языках дедуктивных наук" [1933], в котором он пишет: "Замечания, которые я сделаю в этом контексте, большей частью не составляют достояние моих собственных исследований: в них нашли свое выражение взгляды, развитые г. Ст. Лесьневским в его лекциях в Варшавском университете (начиная с 1919/20 акад. г.), в научных дискуссиях и частных беседах; особенно это относится почти ко всему, что я скажу о выражениях в кавычках и семантических антиномиях." (S.4) Кроме того, Лесьневскому принадлежит также подробнейшим образом разработанная теория определений, как и другие вопросы семантики, например, денотации (референции) или обозначения, в полной мере используемые Тарским в своей работе. Самому же Тарскому принадлежит использование по существу понятия "выполнения", которое ему было , вероятно, "ближе" как математику.

Цель своего исследования Тарский формулирует следующим образом: "Настоящая работа посвящена почти полностью только одному вопросу: проблеме дефиниции истины; ее сущность состоит в том, чтобы, имея в виду тот или иной язык, сконструировать по существу верную и формально правильную дефиницию термина "истинное предложение".

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180