Библиотека >> Критика чистого разума
Скачать 387.59 Кбайт Критика чистого разума
Но этот регресс всегда состоит только
в определении [нами] величины и потому не дает определенного понятия, а следовательно, и понятия о величине, которая была бы бесконечной в отношении какой-то меры; следовательно, он идет не в бесконечность (как бы данную), а в неопределенную даль, чтобы дать объем (опыта), который становится действительным только благодаря этому регрессу. II Разрешение космологической идеи о целокупности деления данного целого в созерцании Если я делю целое, данное в созерцании, то я иду от обусловленного к условиям его возможности. Деление частей (subdivisio или decompositio) есть регресс в ряду этих условий. Абсолютная целокупность этого ряда была бы дана лишь в том случае, если бы регресс мог дойти до простых частей. Но если все части в непрерывно продолжающемся разложении в свою очередь еще делимы, то деление, т. е. регресс от обусловленного к его условиям, идет in infinitum, потому что условия (части) содержатся в самом обусловленном и даны все вместе с ним, так как оно целиком дано в созерцании, заключенном в его границы. Следовательно, этот регресс не следует называть только регрессом in indefinitum, как это позволила лишь предыдущая космологическая идея, где я должен был идти от обусловленного к его условиям, которые находились вне обусловленного, т. е. не были даны вместе с ним, а лишь присоединялись к нему в эмпирическом регрессе. Тем не менее о целом, делимом до бесконечности, нельзя сказать, что оно состоит из бесконечного множества частей. В самом деле, хотя все части содержатся в созерцании целого, однако в нем не содержится все деление, состоящее лишь в продолжающемся разложении или самом регрессе, который единственно и делает ряд действительным. Так как этот регресс бесконечен, то в данном целом, правда, содержатся как агрегаты все члены (части), до которых доходит регресс, однако не весь ряд деления, который последовательно бесконечен и никогда не есть целый ряд, следовательно, не может показывать бесконечного множества частей и собирания их в одно целое. Это общее замечание легко применить прежде всего к пространству. Всякое созерцаемое в своих границах пространство есть такое целое, части которого при всяком разложении в свою очередь все еще представляют собой пространства, и потому оно делимо до бесконечности. Отсюда совершенно естественно вытекает также второе применение [этого замечания], а именно к внешнему явлению (телу), заключенному в своих границах. Делимость тела основывается на делимости пространства, составляющего возможность тела как протяженного целого. Следовательно, тело делимо до бесконечности, хотя и не состоит еще ввиду этого из бесконечного множества частей. Так как тело должно представляться как субстанция в пространстве, то кажется, что оно должно отличаться от пространства, поскольку дело идет о законе делимости пространства; ведь можно, конечно, соглашаться с тем, что разложением в пространстве никогда не может быть устранено какое-либо сложение, так как в противном случае само пространство, которое, кроме сложения, не имеет ничего самостоятельного, исчезло бы (что невозможно); но утверждение, что после мысленного устранения всякого сложения материи ничего не остается, кажется несовместимым с понятием субстанции, потому что субстанция, как считают, есть, собственно, субъект всякого сложения, и она должна была бы остаться в своих элементах, хотя бы и была устранена связь между ними в пространстве, благодаря которой они образуют тело. Однако то, что в явлении называется субстанцией, не обладает такими свойствами, какие мыслились бы относительно вещи в себе на основании чистого рассудочного понятия. Субстанция в явлении есть не абсолютный субъект, а постоянный образ чувственности и не более как созерцание, в котором вообще нет ничего безусловного. Хотя это правило продвижения в бесконечность, без сомнения, действует при делении явления как простого наполнения пространства, тем не менее оно не может иметь силу, если мы захотим распространить его также на определенное множество уже так или иначе обособленных в данном целом частей, составляющих благодаря этому quantum discrctum. Допускать, что во всяком расчлененном (организованном) целом всякая часть в свою очередь расчленена и что, таким образом, при разложении частей нам будут встречаться до бесконечности все новые организованные части (Kunsttcilc),-одним словом, допускать, что целое расчленено до бесконечности, никак нельзя, хотя, конечно, можно допускать, что части материи при их разложении могли бы быть расчленены до бесконечности. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
| ||
|