Библиотека >> Критика чистого разума
Скачать 387.59 Кбайт Критика чистого разума
Конечная цель всего нашего
спекулятивного априорного знания зиждется именно на таких синтетических, т. е. расширяющих [знание], основоположениях, тогда как аналитические суждения, хотя в высшей степени важны и необходимы, но лишь для того, чтобы приобрести отчетливость понятий, требующуюся для достоверного и широкого синтеза, а не для того, чтобы приобрести нечто действительно новое. V. Все теоретические науки, основанные на разуме, содержат априорные синтетические суждения как принципы 1. Все математические суждения- синтетические. Это положение до сих пор, по-видимому, ускользало от внимания аналитиков человеческого разума; более того, оно прямо противоположно всем их предположениям, хотя оно бесспорно достоверно и очень важно для дальнейшего исследования. В самом деле, когда было замечено, что умозаключения математиков делаются по закону противоречия (а это требуется природой всякой аподиктической достоверности), то уверили себя, будто основоположения также познаются исходя из закона противоречия; но это убеждение было ошибочным, так как синтетическое положение, правда, можно усмотреть из закона противоречия, однако никак не само по себе, а таким образом, что при этом всегда предполагается другое синтетическое положение, из которого оно может быть выведено. Прежде всего следует заметить, что настоящие математические положения всегда априорные, а не эмпирические суждения, потому что они обладают необходимостью, которая не может быть заимствована из опыта. Если же с этим не хотят согласиться, то я готов свое утверждение ограничить областью чистой математики, само понятие которой уже указывает на то, что она содержит не эмпирическое, а исключительно только чистое априорное знание. На первый взгляд может показаться, что положение 7+5=12 чисто аналитическое [суждение], вытекающее по закону противоречия из понятия суммы семи и пяти. Однако, присматриваясь ближе, мы находим, что понятие суммы 7 и 5 содержит в себе только соединение этих двух чисел в одно и от этого вовсе не мыслится, каково то число, которое охватывает оба слагаемых. Понятие двенадцати отнюдь еще не мыслится от того, что я мыслю соединение семи и пяти; и сколько бы я ни расчленял свое понятие такой возможной суммы, я не найду в нем числа 12. Для этого необходимо выйти за пределы этих понятий, прибегая к помощи созерцания, соответствующего одному из них, например своих пяти пальцев или (как это делает Зегнер в своей арифметике) пяти точек, и присоединять постепенно единицы числа 5, данного в созерцании, к понятию семи. В самом деле, я беру сначала число семь и затем, для получения понятия пяти, прибегая к помощи созерцания пальцев своей руки, присоединяю постепенно к числу 7 с помощью этого образа единицы, ранее взятые для составления числа 5, и таким образом вижу, как возникает число 12. То, что 5 должно было быть присоединено к 7, я, правда, мыслил в понятии суммы =7+5, но не мыслил того, что эта сумма равна двенадцати. Следовательно, приведенное арифметическое суждение всегда синтетическое. Это становится еще очевиднее, если взять несколько большие числа, так как в этом случае ясно, что, сколько бы мы ни манипулировали своими понятиями, мы никогда не могли бы найти сумму посредством одного лишь расчленения понятий, без помощи созерцаний. Точно так же ни одно основоположение чисто геометрии не есть аналитическое суждение. Положение прямая линия есть кратчайшее расстояние между двумя точками -синтетическое положение. В самом деле, мое понятие прямой содержит только качество, но ничего не говорит о количестве. Следовательно, понятие кратчайшего [расстояния] целиком присоединяется к понятию прямой линии извне и никаким расчленением не может быть извлечено из вето. Поэтому здесь необходимо прибегать к помощи созерцания, посредством которого только и возможен синтез. Только немногие из основоположений, предполагаемых геометрами, суть действительно аналитические суждения и основываются на законе противоречия. Однако они, будучи тождественными положениями, служат только для методической связи, а не в качестве принципов; таковы, например, суждение а=а, целое равно самому себе, или (a+b)>a, т. е. целое больше своей части. Но даже и эти суждения, хотя они имеют силу на основании одних только понятий, допускаются в математике лишь потому, что могут быть показаны в созерцании. Если мы обыкновенно думаем, будто предикат таких аподиктических суждений уже содержится в нашем понятии и, стало быть, суждение аналитическое, то это объясняется исключительно двусмысленностью выражений. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
| ||
|