Библиотека >> Наука логики
Скачать 576.03 Кбайт Наука логики
Ясно, что можно было бы без окольного пути доказательства от противного дать в качестве доказательства указанный выше довод, присоединив его непосредственно к тезису, гласящему: "Сложная субстанция состоит из простых частей", ибо сложение есть лишь случайное отношение субстанций, которое для них, следовательно, внешне и не касается самих субстанций. - Если правильно, что сложение есть нечто случайное, то сущность, конечно, есть простое. Но эта случайность, в которой вся суть, не доказывается [Кантом ], а прямо принимается [им ] - и притом мимоходом, в скобках - как нечто само собой разумеющееся или побочное. Конечно, само собой понятно, что сложение есть определение случайного и внешнего. Но если вместо непрерывности имеется в виду лишь случайная совместность, то не стоило устанавливать по этому поводу антиномию или, правильнее сказать, вообще нельзя было установить антиномию. Утверждение о простоте частей в таком случае, как сказано, лишь тавтологично. Мы видим, стало быть, что на окольном пути доказательства от противного в доказательстве имеется то самое утверждение, которое должно получиться как вывод из доказательства. Можно поэтому выразить доказательство короче следующим образом: Допустим, что субстанции не состоят из простых частей, а лишь сложены. Но ведь мысленно можно устранить всякое сложение (ибо оно есть лишь случайное отношение); следовательно, после его устранения не осталось бы никаких субстанций, если бы они не состояли из простых частей. Но субстанции должны у нас быть, так как мы предположили, что они существуют; у нас не все должно исчезнуть, а кое-что должно остаться, ведь мы предположили существование такого сохраняющегося, которое мы назвали субстанцией; это нечто, следовательно, необходимо должно быть простым. Чтобы картина была полной, необходимо рассмотреть еще и заключение. Оно гласит: "Отсюда непосредственно следует, что все вещи в мире суть простые сущности, что сложение есть только внешнее состояние их и что разум должен мыслить элементарные субстанции как простые сущности" . Здесь мы видим, что внешний характер, т. е. случайность сложения, приводится как следствие, после того как ранее она была введена в доказательство в скобках и применялась там [в качестве довода]. Кант решительно протестует против утверждения, будто в противоречивых положениях антиномий он стремится к эффектам, чтобы, так сказать (как обычно выражаются), дать адвокатскую аргументацию. Рассматриваемую аргументацию приходится обвинять не столько в расчете на эффекты, сколько в бесполезной вымученной запутанности, служащей лишь тому, чтобы создать вид доказательности и помешать заметить во всей его прозрачности то обстоятельство, что то, чтб должно появиться как следствие, составляет в скобках самое суть доказательства, - что вообще здесь нет доказательства, а есть лишь предположение. Антитезис гласит: Ни одна сложная вещь в мире не состоит из простых частей, и вообще в мире нет ничего простого. Доказательство антитезиса тоже ведется от противного и по-своему столь же неудовлетворительно, как и предыдущее. "Допустим, - читаем мы, - что сложная вещь как субстанция состоит из простых частей. Так как всякое внешнее отношение, стало быть, также и всякое сложение субстанций, возможно лишь в пространстве, то и пространство, занимаемое сложной вещью, должно состоять из стольких же частей, из скольких состоит эта вещь. Но пространство состоит не из простых частей, а из пространств. Следовательно, каждая часть сложной вещи должна занимать какое-то пространство". "Но безусловно первоначальные части всего сложного просты". "Следовательно, простое занимает какое-то пространство". "А так как все реальное, занимающее какое-то пространство, заключает в себе многообразное, [составные части] которого находятся вне друг друга, стало быть, есть нечто сложное, и притом состоит из субстанций, то простое было бы субстанциально сложным, что противоречиво". Это доказательство можно назвать целым гнездом (употребляя встречающееся в другом месте выражение Канта) ошибочных способов рассуждения. Прежде всего доказательство от противного есть ни на чем не основанная видимость. Ибо допущение, что все субстанциальное пространственно, пространство же не состоит из простых частей, есть прямое утверждение, которое [Кант] делает непосредственным основанием того, что требуется доказать, и при наличии которого все доказательство уже готово. Затем это доказательство от противного начинается с предложения, что "всякое сложение субстанций есть внешнее отношение", но довольно странным образом Кант сейчас же вновь его забывает. А именно, далее рассуждение ведется так, что сложение возможно лишь в пространстве, а пространство не состоит из простых частей; следовательно, реальное, занимающее то или иное пространство, сложно. Если только допущено, что сложение есть внешнее отношение, то сама пространственность (так же, как и все прочее, что может быть выведено из определения пространственности), единственно лишь в которой якобы возможно сложение, есть именно поэтому для субстанций внешнее отношение, которое их совершенно не касается и не затрагивает их природы. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
| ||
|