Библиотека >> Наука логики

Скачать 576.03 Кбайт
Наука логики

При этом можно отметить, что так как приращение, не имеющее определенного количества, принимается лишь для целей разложения в ряд, то было бы всего уместнее обозначить его цифрой 1 (единицей), потому что приращение всегда встречается в разложении только как множитель, а множитель "единица" как раз и достигает той цели, чтобы приращение не приводило к какой-либо качественной определенности и к какому-либо количественному изменению, dx же, обремененное ложным представлением о некоторой количественной разности, и другие знаки, как, например, i, обремененные бесполезной здесь видимостью всеобщности, всегда выглядят как определенное количество и его степени и притязают на то, чтобы быть таковыми; это притязание приводит к стремлению, несмотря на это, избавиться от них, отбросить их. Для сохранения формы ряда, развернутого по степеням, можно было бы с таким же успехом присоединять обозначения показателей как indices к единице. Но и помимо этого необходимо абстрагироваться от ряда и от определения коэффициентов по месту, которое они занимают в ряде: отношение между всеми ими одно и то же; вторая функция - производная от первой, точно так же как первая - от первоначальной, и для той, которая по счету вторая, первая производная функция есть в свою очередь первоначальная.

По существу же своему интерес составляет не ряд, а единственно лишь получающееся в результате разложения в ряд степенные определение в своем отношении к непосредственной для него величине. Стало быть, вместо того чтобы считать это определение коэффициентом первого члена разложения, было бы предпочтительнее (так как каждый член обозначается как первый относительно следующих за ним членов ряда, а такая степень в качестве степени приращения, как и сам ряд, не относится сюда) употреблять простое выражение "производная степенная функция", или, как мы сказали выше, "функция возведения величины в степень", причем предполагается, что известно, каким образом производная берется как заключенная внутри некоторой степени разложения.

Но если в этой части анализа собственно математическое начало есть не что иное, как нахождение функции, определенной через разложение в степенной ряд, то возникает еще один вопрос:

что делать с полученным таким образом отношением, каково применение его и пользование им, или [вопрос]: действительно, для какой цели ищут такие функции? Дифференциальное исчисление вызвало к себе большой интерес именно тем, что оно находило такие отношения в конкретных предметах, сводимых к этим абстрактным аналитическим отношениям.

Но относительно применимости из самой природы сути вещей в силу вскрытого выше характера моментов степени само собой вытекает прежде всего следующее, еще до того, как будет сделан вывод из случаев применения. Разложение в ряд степенных величин, посредством которого получаются функции их возведения в степень, если абстрагироваться от более точного определения, отличается прежде всего вообще тем, что величина понижается на одну степень. Такое действие, следовательно, находит применение в таких предметах, в которых также имеется такое различие степенных определений. Если будем иметь в виду пространственную определенность, то найдем, что она содержит те три измерения, которые мы, чтобы отличить их от абстрактных различий высоты, длины и ширины, можем обозначить как конкретные измерения, а именно линию, поверхность и тотальное пространство; а поскольку они берутся в их простейших формах и в соотношении с самоопределением и, стало быть, с аналитическими измерениями, то мы получаем прямую линию, плоскостную поверхность (и ее же как квадрат) и куб. Прямая линия имеет эмпирическое определенное количество, но с плоскостью появляется то, чтб обладает качеством, степеннбе определение; более детальные видоизменения, например то, что это происходит уже и с плоскими кривыми, мы можем оставить без рассмотрения, поскольку здесь дело идет прежде всего о различии лишь в общем виде. Тем самым возникает также потребность переходить от более высокого степенного определения к низшему










Видимость случайности, представляемая дифференциальным исчислением в разном его применении, упростилась бы уже пониманием природы сфер применения и специфической потребности и условия этого применения. Но в самих этих сферах важно далее знать, между какими частями предметов математической задачи имеет место такое отношение, которое специфически полагается дифференциальным исчислением. Пока что мы сразу должны заметить, что при этом нужно принимать во внимание двоякого рода отношения. Действие понижения степени уравнения, рассматриваемое со стороны производных функций его переменных величин, дает результат, который в самом себе поистине есть уже не уравнение, а отношение. Это отношение составляет предмет собственно дифференциального исчисления. Но именно поэтому, во-вторых, здесь имеется также отношение самогб более высокого степеннбго определения (первоначального уравнения) к низшему (производной функции). Это второе отношение мы должны оставить пока без внимания; впоследствии оно окажется предметом, характерным для интегрального исчисления.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379  380  381  382