Библиотека >> Наука логики

Скачать 576.03 Кбайт
Наука логики



Против указанных определений очень отстало представление о бесконечно малых величинах, связанное с [представлением о] самом приращении или убывании. Согласно этому представлению, бесконечно малые величины таковы, что можно пренебрегать не только ими самими при сравнении с конечными величинами, но также их высшими разрядами при сравнении с низшими, а равно и произведениями нескольких таких величин при сравнении с одной. - У Лейбница особенно подчеркивается требование такого пренебрежения, которому отдали дань и предшествующие изобретатели методов, касавшихся этих величин. Прежде всего именно это пренебрежение придает указанному исчислению, несмотря на то, что оно удобно, видимость неточности и явной неправильности способа его действий. - Вольф старался объяснить это пренебрежение [величинами], следуя своей манере делать общедоступными рассматриваемые им вопросы, т. е. лишать понятие чистоты и подменять его неправильными чувственными представлениями. А именно он сравнивает пренебрежение бесконечно малыми разностями высших разрядов относительно низших с образом действия геометра, при котором измерение высоты горы нисколько не делается менее точным, если ветер сдунет песчинку с ее вершины или если не будет принята во внимание высота домов и башен при вычислении лунных затмений (Element. mathes. univ. Tom I. El. analys. math. P. II. C. I. S. schol.).

Если снисходительность здравого смысла дозволяет такую неточность, то все геометры, напротив, отвергали такого рода представление. Сама собой напрашивается мысль, что в математической науке идет речь вовсе не о такой эмпирической точности и что математическое измерение посредством ли вычислении или посредством геометрических построений и доказательств совершенно отлично от измерения земли, от измерения эмпирических линий, фигур и т. п. Да и помимо того, как уже было указано выше, аналитики, сравнивая результаты, получаемые строго геометрическим путем, с результатами, получаемыми методом бесконечно малых разностей, доказывают, что они одинаковы и что большая или меньшая точность [здесь] вовсе не имеет места. А ведь само собой разумеется, что абсолютно точный результат не мог бы получиться при неточном способе действия. Однако, с другой стороны, сам способ действия, несмотря на протесты против приведенных в оправдание доводов, не может обойтись без пренебрежения [величиной ] на том основании, что она незначительна. И в этом состоит трудность, побуждающая аналитиков объяснить заключающуюся здесь бессмыслицу и устранить ее.

По этому вопросу следует прежде всего привести мнение Эйлера. Исходя из общего определения Ньютона, он твердо убежден, что дифференциальное исчисление рассматривает отношения приращений величины, но что бесконечно малую разность, как таковую, следует рассматривать как нуль (Institut. calc. different., р. I. с. III). - Как это надо понимать, видно из изложенного выше; бесконечно малая разность есть нуль лишь как определенное количество, а не качественный нуль; а как нуль по количеству она скорее чистый момент лишь отношения. Она не различие на некоторую величину. Но именно поэтому, с одной стороны, вообще ошибочно называть моменты, именуемые бесконечно малыми величинами, также и приращениями или убываниями и разностями. Это определение исходит из того, что к имеющейся сначала конечной величине что-то прибавляется или что-то от нее отнимается, что производится некоторое вычитание или сложение, некоторое арифметическое, внешнее действие. Но что касается перехода от функции переменной величины к ее дифференциалу, то по нему видно, что он совершенно другого характера, а именно, как уже было разъяснено, он должен рассматриваться как сведение конечной функции к качественному отношению ее количественных определений. - С другой стороны, сразу бросается в глаза ошибочность утверждения, будто приращения сами по себе - это нули и будто рассматриваются только их отношения; ведь нуль вообще уже не имеет никакой определенности. Это представление, стало быть, хотя и доходит до отрицательности определенного количества и определенно выражает эту отрицательность, однако в то же время не схватывает ее в ее положительном значении качественных определений количества, которые, если хотят вырвать их из отношения и брать их как определенные количества, окажутся лишь нулями. - Лагранж 109 (Theorie des fonct. analyt. Introd.) замечает относительно представления о пределах или последних отношениях, что, хотя и можно очень хорошо представить себе отношение двух величин, пока они остаются конечными, это отношение не дает рассудку ясного и определенного понятия, как только его члены становятся одновременно нулями. - И в самом деле, рассудок должен выйти за пределы той чистой отрицательности, что как определенные количества члены отношения суть нули, и понять их положительно как качественные моменты. - А то, что Эйлер (в указанном месте § 84 и ел.) прибавляет еще относительно данного [им ] определения, чтобы показать, что две так называемые бесконечно малые величины, которые якобы не что иное, как нули, тем не менее находятся в отношении друг к другу, и потому для их обозначения пользуются не знаком нуля, а другими знаками, - нельзя признать удовлетворительным.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379  380  381  382