Библиотека >> Наука логики

Скачать 576.03 Кбайт
Наука логики

Аксиомы геометрии и суть подобного рода леммы, логические положения, которые, впрочем, близки к тавтологиям потому, что они касаются лишь величины и ввиду этого качественные различия в них стерты; о главной аксиоме, о чисто количественном умозаключении, речь шла выше. - Поэтому рассматриваемые сами по себе аксиомы точно так же нуждаются в доказательстве, как и дефиниции и членения, и их не делают теоремами только потому, что они как относительно первые принимаются определенной точкой зрения за предпосылки.

Относительно содержания научного положения следует теперь провести то более точное различие, что так как это содержание находится в соотношении определенностей реальности понятия, то эти соотношения могут быть либо в той или другой мере недостаточными и отдельными отношениями предмета, либо же таким отношением, которое охватывает все содержание реальности и выражает его определенное соотношение. Но единство исчерпывающих определенностей содержания равно понятию; положение, содержащее единство, само поэтому есть опять-таки дефиниция, но такая, которая выражает не только непосредственно воспринятое понятие, но понятие, развернутое в свои определенные, реальные различия, иначе говоря, полностью осуществленное понятие. И то и другое вместе представляет поэтому

идею.

Если более тщательно сравнить между собой положения какой-нибудь синтетической науки, и в особенности геометрии, то обнаружится следующее различие: одни теоремы этой науки содержат лишь отдельные отношения предмета, другие же - такие отношения, в которых выражена исчерпывающая определенность предмета. Весьма поверхностно рассматривать все положения как равноценные на том основании, что-де вообще каждое из них содержит некоторую истину и что они в формальной процедуре, в ходе доказательства одинаково существенны. Различие, касающееся содержания теорем, самым тесным образом связано с самой этой процедурой; некоторые дальнейшие замечания о ней послужат к тому, чтобы больше выяснить указанное различие, равно как и природу синтетического познания. Прежде всего [необходимо отметить следующее]: Евклидова геометрия, которая должна служить здесь примером как представительница синтетического метода, будучи его наиболее совершенным образцом, издавна превозносится за порядок расположения в ней теорем - каждой теореме предпосылаются как уже ранее доказанные те положения, которые требуются для ее построения доказательства. Это обстоятельство касается формальной последовательности; как ни важна такая последовательность, она все же больше касается внешнего упорядочения сообразно цели и сама по себе не имеет никакого отношения к существенному различию между понятием и идеей, в котором заключается более высокий принцип необходимости движения вперед. - А именно, в дефинициях, с которых начинают [в геометрии], постигается чувственный предмет как непосредственно данный и определяют его по его ближайшему роду и видовому отличию, которые также суть простые, непосредственные определенности понятия - всеобщность и особенность, - отношение между которыми не развертывается дальше. Начальные теоремы сами не могут опираться ни на что другое, кроме таких непосредственных определений, как те, чтб содержатся в дефинициях; а равно и их взаимная зависимость может иметь прежде всего лишь то общее, что одно определение вообще определено другим. Так, первые теоремы Евклида о треугольниках касаются лишь конгруэнтности, т. е. вопроса о том, сколько частей должно быть определено в треугольнике, чтобы были вообще определены и остальные части того же треугольника, иначе говоря, весь треугольник в целом. То, что сравниваются друг с другом два треугольника и конгруэнтность усматривают в наложении [одного треугольника на другой ], - это уловка, в которой нуждается метод, долженствующий пользоваться физическим наложением вместо мысленного - быть определенным (Bestimmtsein). Помимо этого, рассматриваемые отдельно, эти теоремы сами содержат две части, из которых одну можно считать понятием, а другую-реальностью, тем, чтб завершает понятие, сообщая ему реальность. А именно, то, чтб полностью определяет [треугольник] (например, две стороны и заключенный между ними угол), есть для рассудка уже весь треугольник; для исчерпывающей определенности треугольника ничего больше не требуется; остальные два угла и третья сторона - это уже избыток реальности над определенностью понятия. Поэтому результат указанных теорем, собственно говоря, таков: они сводят чувственный треугольник, во всяком случае нуждающийся в трех сторонах и трех углах, к [его] простейшим условиям;

дефиниция вообще упомянула лишь о трех линиях, замыкающих плоскую фигуру и делающих ее треугольником; лишь теорема выражает то, что углы определены определенностью сторон, равно как другие теоремы указывают на зависимость других трех частей треугольника от трех упомянутых частей. - Исчерпывающую определенность величины треугольника по его сторонам внутри его самого содержит Пифагорова теорема; лишь она есть уравнение сторон треугольника, тогда как предшествующие теоремы 72 доходят лишь вообще до установления определенности его частей по отношению друг к другу, а не до уравнения.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379  380  381  382