Библиотека >> Наука логики
Скачать 576.03 Кбайт Наука логики
Аксиомы геометрии и суть подобного рода леммы, логические положения, которые, впрочем, близки к тавтологиям потому, что они касаются лишь величины и ввиду этого качественные различия в них стерты; о главной аксиоме, о чисто количественном умозаключении, речь шла выше. - Поэтому рассматриваемые сами по себе аксиомы точно так же нуждаются в доказательстве, как и дефиниции и членения, и их не делают теоремами только потому, что они как относительно первые принимаются определенной точкой зрения за предпосылки.
Относительно содержания научного положения следует теперь провести то более точное различие, что так как это содержание находится в соотношении определенностей реальности понятия, то эти соотношения могут быть либо в той или другой мере недостаточными и отдельными отношениями предмета, либо же таким отношением, которое охватывает все содержание реальности и выражает его определенное соотношение. Но единство исчерпывающих определенностей содержания равно понятию; положение, содержащее единство, само поэтому есть опять-таки дефиниция, но такая, которая выражает не только непосредственно воспринятое понятие, но понятие, развернутое в свои определенные, реальные различия, иначе говоря, полностью осуществленное понятие. И то и другое вместе представляет поэтому идею. Если более тщательно сравнить между собой положения какой-нибудь синтетической науки, и в особенности геометрии, то обнаружится следующее различие: одни теоремы этой науки содержат лишь отдельные отношения предмета, другие же - такие отношения, в которых выражена исчерпывающая определенность предмета. Весьма поверхностно рассматривать все положения как равноценные на том основании, что-де вообще каждое из них содержит некоторую истину и что они в формальной процедуре, в ходе доказательства одинаково существенны. Различие, касающееся содержания теорем, самым тесным образом связано с самой этой процедурой; некоторые дальнейшие замечания о ней послужат к тому, чтобы больше выяснить указанное различие, равно как и природу синтетического познания. Прежде всего [необходимо отметить следующее]: Евклидова геометрия, которая должна служить здесь примером как представительница синтетического метода, будучи его наиболее совершенным образцом, издавна превозносится за порядок расположения в ней теорем - каждой теореме предпосылаются как уже ранее доказанные те положения, которые требуются для ее построения доказательства. Это обстоятельство касается формальной последовательности; как ни важна такая последовательность, она все же больше касается внешнего упорядочения сообразно цели и сама по себе не имеет никакого отношения к существенному различию между понятием и идеей, в котором заключается более высокий принцип необходимости движения вперед. - А именно, в дефинициях, с которых начинают [в геометрии], постигается чувственный предмет как непосредственно данный и определяют его по его ближайшему роду и видовому отличию, которые также суть простые, непосредственные определенности понятия - всеобщность и особенность, - отношение между которыми не развертывается дальше. Начальные теоремы сами не могут опираться ни на что другое, кроме таких непосредственных определений, как те, чтб содержатся в дефинициях; а равно и их взаимная зависимость может иметь прежде всего лишь то общее, что одно определение вообще определено другим. Так, первые теоремы Евклида о треугольниках касаются лишь конгруэнтности, т. е. вопроса о том, сколько частей должно быть определено в треугольнике, чтобы были вообще определены и остальные части того же треугольника, иначе говоря, весь треугольник в целом. То, что сравниваются друг с другом два треугольника и конгруэнтность усматривают в наложении [одного треугольника на другой ], - это уловка, в которой нуждается метод, долженствующий пользоваться физическим наложением вместо мысленного - быть определенным (Bestimmtsein). Помимо этого, рассматриваемые отдельно, эти теоремы сами содержат две части, из которых одну можно считать понятием, а другую-реальностью, тем, чтб завершает понятие, сообщая ему реальность. А именно, то, чтб полностью определяет [треугольник] (например, две стороны и заключенный между ними угол), есть для рассудка уже весь треугольник; для исчерпывающей определенности треугольника ничего больше не требуется; остальные два угла и третья сторона - это уже избыток реальности над определенностью понятия. Поэтому результат указанных теорем, собственно говоря, таков: они сводят чувственный треугольник, во всяком случае нуждающийся в трех сторонах и трех углах, к [его] простейшим условиям; дефиниция вообще упомянула лишь о трех линиях, замыкающих плоскую фигуру и делающих ее треугольником; лишь теорема выражает то, что углы определены определенностью сторон, равно как другие теоремы указывают на зависимость других трех частей треугольника от трех упомянутых частей. - Исчерпывающую определенность величины треугольника по его сторонам внутри его самого содержит Пифагорова теорема; лишь она есть уравнение сторон треугольника, тогда как предшествующие теоремы 72 доходят лишь вообще до установления определенности его частей по отношению друг к другу, а не до уравнения. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
| ||
|