Библиотека >> Ключ к загадкам мира

Скачать 219.09 Кбайт
Ключ к загадкам мира



Таким образом, с одной стороны, совершенно не прав Бонола, который приписывает Лобачевскому воззрения, противоположные кантовским, и близость к "сенсуализму" и "обычному эмпиризму", – а с другой стороны, можно думать, что Хинтон совершенно субъективно приписывает Гауссу и Лобачевскому, что они открыли новую эру в философии.

Неэвклидова геометрия, в том числе и геометрия Лобачевского, не имеет никакого отношения к метагеометрии.

Лобачевский не выходит из сферы трех измерений.

Метагеометрия рассматривает сферу трех измерений как разрез высшего пространства. Из математиков ближе всех к этой идее стоял Риман, понимавший отношение времени к пространству.

Точка трехмерного пространства есть разрез метагеометрической линии. Линии, которые рассматривает метагеометрия, нельзя обобщить ни в какой поверхности. Это последнее, может быть, самое важное для определения различия геометрии (эвклидовой и неэвклидовой) и метагеометрии. Метагеометрические линии нельзя рассматривать как расстояние между точками в нашем пространстве. И нельзя представить себе образующими какие-либо фигуры в нашем пространстве.

Рассмотрение возможных свойств линий, лежащих вне нашего пространства, их углов и отношений этих линий и углов к линиям, углам, поверхностям и телам нашей геометрии и составляет предмет метагеометрии.

Исследователи неэвклидовой геометрии не могли решиться отойти от поверхности. В этом есть что-то прямо трагическое. Посмотрите, какие поверхности придумывал Лобачевский при своих исследованиях 11-го постулата Эвклида (о параллельных линиях, то есть собственно об углах, образуемых линией, пересекающей две параллельные) – одна из его поверхностей похожа на поверхность лопастей вентилятора*, другая на поверхность воронки. Но отойти от поверхности совсем, бросить ее раз и навсегда, представить себе, что линия может быть не на поверхности, то есть что ряд линий параллельных или близких к параллельным не может быть обобщен ни в какой поверхности и даже вообще в трехмерном пространстве, – он не мог решиться. И поэтому – и он и очень многие другие геометры, создавая неэвклидову геометрию, не могли выйти из трехмерного мира.

* Роберто Бонола. Неэвклидова геометрия, с. 112, 113.

Механика признает линию во времени, то есть такую линию, какую никак нельзя представить себе на поверхности или как расстояние между двумя точками пространства, – эта линия берется в расчет при вычислении машин. Но геометрия никогда не касалась этой линии и имела дело всегда только с ее разрезами.

* * *
Теперь мы должны вернуться к вопросу: что такое пространство? – и посмотреть, ответили ли мы на этот вопрос.

Ответом было бы точное определение и объяснение трехмерности пространства.

Этого мы сделать не могли. Трехмерность пространства осталась для нас такой же загадочной и непонятной, как прежде. По отношению к ней мы должны сделать одно из двух:


или принять ее как данное и прибавить это данное к тем двум данным, которые мы установили вначале;
или признать неправильность нашего метода рассуждения и попробовать другой метод.
Вообще говоря, исходя из принятых нами двух основных данных мира и сознания, мы должны установить, свойством чего является трехмерное пространство, свойством мира или свойством нашего познания мира.

Начав с Канта, который утверждает, что пространство есть свойство восприятия мира нашим сознанием, мы дальше уклонились от этой идеи и рассматривали пространство как свойство мира.

Мы допустили вместе с Хинтоном, что наше пространство в самом себе несет условия, которые позволяют нам установить его отношения к высшему пространству, и на основании этого предположения построили целый ряд аналогий, кое-что выяснивших для нас в вопросах пространства и времени и их взаимных отношений, но, как мы уже заметили, ничего не разъяснивших относительно главного вопроса о причинах трехмерности пространства.

Метод аналогий вообще довольно мучительная вещь. Вы ходите с ним по замкнутому кругу. Он помогает уяснить некоторые вещи и отношения вещей, но в сущности никогда и ни на что не дает прямого ответа. После долгих и многочисленных попыток разобраться в сложных вопросах при помощи аналогий, вы чувствуете тщетность всех ваших усилий, чувствуете, что с этими аналогиями ходите вдоль стены, – и тогда вы начинаете испытывать прямо ненависть и отвращение к аналогиям и искать прямого пути, непосредственно ведущего туда, куда вам нужно.

Если мы хотим идти прямым путем, не уклоняясь от него, мы должны строго держаться основных положений Канта. Если же мы с точки зрения этих положений формулируем приведенную выше мысль Хинтона, то получится следующее: мы в себе самих несем условия нашего пространства и поэтому в себе же должны найти условия, которые позволили бы нам установить отношения нашего пространства к высшему.

Иначе говоря, мы должны в нашей психике, в нашем воспринимательном аппарате найти условия трехмерности мира – и там же найти условия возможности мира высших измерений.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128