Библиотека >> История новоевропейской философии в ее связи с наукой
Скачать 344.21 Кбайт История новоевропейской философии в ее связи с наукой
Насколько эта противоположность была принципиальна также и для средневековой науки, свидетельствует, в частности, трактат Брадвардина о континууме, где показано, к каким парадоксам и противоречиям приводит попытка составления континуума из неделимых (т.е. из точек). Галилей показывает, какие новые возможности открываются перед научным мышлением, если принять понятие актуальной бесконечности. "...Разделяя линию на некоторые конечные и потому поддающиеся счету части, нельзя получить путем соединения этих частей линии, превышающей по длине первоначальную, не вставляя пустых пространств между ее частями; но, представляя себе линию, разделенную на неконечные части, то есть на бесконечно многие ее неделимые, мы можем мыслить ее колоссально растянутой без вставки конечных пустых пространств, а путем вставки бесконечно многих неделимых пустот". Таким путем вводит Галилей чрезвычайно важное для науки XVII-XVIII вв. понятие неделимого, вызвавшее серьезную и очень плодотворную дискуссию между математиками, философами, физиками на протяжении более чем двухсот лет. Как видим, это новое понятие вводится с помощью математического доказательства и базируется на приеме, введенном в философское мышление Николаем Кузанским, - на приеме предельного перехода, представляющем собой как бы псевдонаглядную демонстрацию принципа совпадения противоположностей. Именно псевдонаглядную, потому что не только нашему наглядному представлению, но даже нашему мышлению не под силу понять совпадение противоположностей, о котором ведут речь и Кузанец, и Галилей. Заметим, как называет Галилей это новорожденное понятие-парадокс. Он дает ему несколько имен, каждое из которых несет на себе след того приема мысли, с помощью которого это понятие появилось на свет: "пустые точки", "неделимые пустоты", "неконечные части линии" и, наконец, просто "неделимые", или "атомы". Вот тут, на исходе XVI в., впервые действительно появляются те самые "математические атомы", или "амеры", которые С.Я. Лурье нашел у Галилея и его ученика Кавальери и попытался - но без достаточных доказательств - обнаружить также и у Демокрита. К такому сопоставлению С.Я. Лурье побудили, вероятно, некоторые высказывания того же Галилея. Получив понятие "неделимое" в рамках математического рассуждения, Галилей, однако же, показывает, что это понятие вполне работает также и в физике, более того, как мы помним, даже и математическое доказательство было предпринято им с целью найти средства для решения физической проблемы связности тел. "То, что я сказал о простых линиях, - пишет Галилей, - относится также и к поверхностям твердых тел, если рассматривать их как состоящие из бесконечного множества атомов. Если мы разделим тело на конечное число частей, то, без сомнения, не сможем получить из них тела, которое занимало бы объем, превышающий первоначальный, без того, чтобы между частями не образовалось пустого пространства, то есть такого, которое не заполнено веществом данного тела; но если допустить предельное и крайнее разложение тела на лишенные величины и бесчисленные первичные составляющие, то можно представить себе такие составляющие растянутыми на огромное пространство путем включения не конечных пустых пространств, а только бесконечно многих пустот, лишенных величины. И таким образом допустимо, например, растянуть маленький золотой шарик на весьма большой объем, не допуская конечных пустот, - во всяком случае, если мы принимаем, что золото состоит из бесконечно многих неделимых". Не удивительно, что понятие "неделимое", или "бесконечно малое", на протяжении многих десятилетий отвергалось большим числом математиков и вызывало множество споров у физиков. Ведь в сущности Галилей в приведенном выше отрывке узаконивает апорию Зенона, служившую для элеатов средством доказательства того, что актуально бесконечное множество вообще не может быть мыслимо без противоречия, превращая ее из орудия разрушения в орудие созидания, но не снимая при этом противоречия, а пользуясь им как инструментом позитивной науки. В самом деле, Галилей утверждает, что из лишенных величины элементов (т.е. элементов, строго говоря, бестелесных, ибо тело - пусть самое наименьшее - всегда имеет величину) можно составить как угодно большое тело при условии, что этих лишенных величины составляющих будет бесконечное множество. Таким образом, одно непонятное - лишенную величины составляющую часть тела - Галилей хочет сделать инструментом познания с помощью другого непонятного - актуально существующего бесконечного числа, которого не принимала ни античная, ни средневековая математика. Последняя, правда, в лице некоторых своих теоретиков, как, например, Гроссетеста, признавала актуально бесконечное число, но оговаривала, что оно доступно лишь Богу, а человеческий разум оперировать этим понятием не в состоянии. Как видно из рассуждений Галилея, понятие бесконечно малого вводится им одновременно с понятием бесконечно большого - эти два понятия взаимно предполагают друг друга, точно так же как это мы видели у Николая Кузанского. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
| ||
|