Библиотека >> История новоевропейской философии в ее связи с наукой
Скачать 344.21 Кбайт История новоевропейской философии в ее связи с наукой
Платон потому и поставил геометрию после арифметики, что считал геометрию менее строгой в силу ее обращения к пространственным образам, а не к одним только понятиям ума. Лейбниц, хорошо знакомый с сочинениями Платона и Прокла, разделяет их точку зрения, что пространственные образы - это смутные, неадекватные идеи, и тот, кто с их помощью стремится дать определение исходных понятий геометрии, не может этого сделать с надлежащей строгостью. "Вот почему Евклид за отсутствием отчетливо выраженной идеи, т.е. определения прямой линии (так как его провизорное определение прямой неясно и он им не пользуется в своих доказательствах), был вынужден обратиться к двум аксиомам, которые заменяли у него определение и которыми он пользовался в своих доказательствах. Первая аксиома гласит, что две прямые не имеют общей части, а вторая - что они не заключают пространства. Архимед дал своего рода определение прямой линии, сказав, что это кратчайшая линия между двумя точками. Но, пользуясь в своих доказательствах такими элементами, как евклидовы, которые основаны на только что упомянутых мной двух аксиомах, он молча предполагает, что свойства, указанные в этих аксиомах, принадлежат определенной им линии".
Но если основания античной геометрии были столь непрочны, то как же следует отнестись к построенному на них зданию? Что это - строгая научная система, какой считали геометрию и в античности, и в средние века, и уж тем более в XVII столетии, или же это просто практическое искусство, способ решения технико-практических задач, каким с древности считали логистику? В самом деле, если очевидность евклидовых аксиом носит не чисто логический характер, а опирается и на воображение (что несомненно), то "Начала" невозможно считать строго научной системой. Однако Лейбниц столь радикального вывода не делает. Он заявляет, что все же "лучше было ограничиться небольшим количеством истин этого рода, казавшихся ему (Евклиду. - П.Г.) наипростейшими, и вывести из них другие истины... чем оставить множество их недоказанными и, что еще хуже, предоставить людям свободу допускать все, что угодно, в зависимости от настроения". Ибо даже при помощи таких, далеко не первичных аксиом были сделаны великие открытия, которых не было бы, "если бы древние не захотели двинуться вперед до того, как они не докажут аксиом, которыми они вынуждены были пользоваться". Но в таком случае возникает другой вопрос: если без предлагаемого Лейбницем анализа возможно создание столь логически стройной и все-таки весьма достоверной науки, как античная геометрия, то так ли уж необходим этот анализ? На эту неувязку в рассуждениях Лейбница обратил внимание В. Каринский в своей работе "Умозрительное знание в философской системе Лейбница". "Может быть, - пишет Каринский, - в этом слишком энергическом выражении мысли о совершенной достоверности геометрии в различии от метафизики, несмотря на то, что аксиомы для общего создания оставались без аналитического доказательства, можно видеть ослабление основного критического значения, приписываемого Лейбницем своей теории анализа". В. Каринский прав: складывается такое впечатление, что Лейбниц принимает, помимо высшего рода достоверности, который может быть обеспечен лишь анализом понятий, также и некоторый как бы промежуточный род и к нему как раз относит аксиомы Евклида. Древние философы, рассуждает Лейбниц, так же как и математики, именно в Греции начали требовать строгости доказательства, стремясь таким образом найти первичные аксиомы, и, хотя до конца выполнить это требование в математике им и не удалось, все же достигнутое ими намного превзошло то, что было сделано до них. Греческие математики не считали возможным принимать за науку то, что дает чувственное представление. Этим, по Лейбницу, "могут довольствоваться только люди, имеющие в виду практическую геометрию как таковую, но не те, кто желает иметь науку, которая сама служила бы усовершенствованию практики. Если бы древние придерживались этого взгляда и не проявили строгости в этом пункте, то, думаю, они не пошли бы далеко вперед и оставили бы нам в наследство лишь такую эмпирическую геометрию, какой была, по-видимому, египетская геометрия и какой является, кажется, китайская геометрия еще и теперь. В этом случае мы оказались бы лишенными прекраснейших открытий в области физики и механики, которые мы сделали благодаря нашей геометрии и которые неизвестны там, где последней нет". Как видим, Лейбниц, так же как и его предшественники Кеплер, Коперник, Галилей и Декарт, видит прямую преемственность между механикой нового времени и античной математикой. Их суждения мы должны принимать во внимание, размышляя о том, возникла ли в результате научной революции XVII столетия абсолютно новая, не имеющая ничего общего с античной и средневековой, форма знания или же между новой и старой наукой была существенная содержательная связь. Вернемся, однако, к обоснованию математики. Непоследовательность в рассуждениях Лейбница об основаниях математики отнюдь не случайна. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
| ||
|