Библиотека >> История новоевропейской философии в ее связи с наукой
Скачать 344.21 Кбайт История новоевропейской философии в ее связи с наукой
Галилеев пример, как видим, заимствован у Николая Кузанского и должен пояснить то же, что пояснял и Кузанец: принципиальное различие между потенциальной бесконечностью, которая всегда связана с конечным (хотя и как угодно большим) числом, телом, временем, пространством и т.д., и бесконечностью актуальной, которая предполагает переход в иной род, изменение сущности, а не количества.
Попутно мы можем видеть, почему античная наука, понятия которой были теснейшим образом связаны со свойствами круга (и в математике, и в физике), не могла допустить актуальной бесконечности и нашла способы избегать его, тем самым освобождаясь от парадоксов, неизбежно сопровождающих это понятие. Коль скоро Галилей вводит понятие актуальной бесконечности, он принимает и все те следствия, которые с необходимостью вытекают из этого понятия-парадокса. Так, к понятию актуально бесконечного неприменимы предикаты "больше", "меньше" или "равно". "...Такие свойства, - говорит Сальвиати, - как большая или меньшая величина и равенство, неприменимы к бесконечному, относительно которого нельзя сказать, что одна бесконечность больше или меньше другой или равна ей". Это почти цитата из Николая Кузанского, многократно подчеркивавшего, что к бесконечному неприменимы те определения, которыми пользуется наш рассудок, имея дело с конечными вещами. При переходе к актуальной бесконечности теряют свою силу все то допущения и операции, на которых до сих пор стояла математика. Актуально бесконечные множества, говорит Галилей, содержатся как в отрезке любой конечной длины, так и в бесконечной линии, - ибо могут ли быть равными бесконечности? Именно такое допущение делает Сагредо: "На основании изложенного, - замечает он, - мне кажется, нельзя утверждать не только того, что одно бесконечное больше другого бесконечного, но даже и того, что оно больше конечного". Ход мысли здесь понятен: поскольку в любом конечном отрезке, как бы мал он ни был, лишенных величины точек обязательно будет бесконечное число, то на этом основании он должен быть так же точно причислен к бесконечному, как и бесконечная линия. Вот почему Сальвиати соглашается с Сагредо: "...понятия "больший", "меньший", "равный" не имеют места не только между бесконечно большими, но и между бесконечно большим и конечным". Трудно более определенно сформулировать исходные предпосылки, которые были бы в противоречии не только с физикой и метафизикой Аристотеля, но и с математикой Евдокса - Евклида - Архимеда, т.е. в противоречии с методологическими основаниями античной науки в целом. Чтобы окончательно разрушить тот барьер, который Аристотель поставил проникновению актуально бесконечного в науку, чтобы доказать несостоятельность аристотелевского решения апорий Зенона и дать этим последним право гражданства в научной мысли, Галилей предпринимает еще одну дерзкую попытку. В ответ на возражение аристотелика Симпличио, что любую линию можно делить до бесконечности, но нельзя разделить на актуально бесконечное множество неделимых точек (ибо линия, по Аристотелю, не состоит из неделимых, как и всякий континуум, - будь то время или непрерывное движение), Галилей заявляет, что "разложение линии на бесконечное множество ее точек не только не невозможно, но сопряжено не с большими трудностями, чем разделение на конечные части". Производится же это разложение с помощью того самого предельного перехода от многоугольника с как угодно большим количеством сторон к многоугольнику с актуально бесконечным количеством сторон, т.е. к окружности, который обычно применяют и Кузанец, и Галилей. Предложенный Галилеем прием, по его словам, должен заставить перипатетиков "принять, что континуум состоит из абсолютно неделимых атомов". Именно от Галилея, как можно видеть из приведенного рассуждения, исходит представление о круге как наглядно данной актуальной бесконечности, т.е. о линии, актуально разделенной на бесконечно большое число неделимых. Не только в науке, но и в философии нового времени круг становится символом актуальной бесконечности. Именно в этой роли мы встречаем его впоследствии у Гегеля, который противопоставляет актуально бесконечное как истинно бесконечное "дурной" - потенциальной бесконечности. Последняя для него воплощается в образе прямой линии, уходящей в бесконечность, а первая - в виде замкнутой линии, т.е. круга. Интересно, что при этом Гегель считает, что возвращается к исходным понятиям античной науки, прежде всего к Платону и Аристотелю, тогда как в действительности он стоит на почве, подготовленной Николаем Кузанским и Галилеем. В античности круг - это не образ актуально бесконечного, а образ целого, которое отнюдь не тождественно актуально бесконечному нового времени, хотя не один только Гегель произвел отождествление этих двух понятий. В результате размышлений над проблемой бесконечного и неделимого Галилей, таким образом, приходит к выводу, что континуум состоит из неделимых атомов. Это утверждение возвращает его к той проблеме, в связи с которой он и предпринял свой анализ понятия бесконечного, а именно к проблеме связности частей твердого тела. Интересно, что теперь Галилей может отбросить ту вспомогательную гипотезу, к которой прибег в начале, - гипотезу о пустых промежутках в твердых телах. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
| ||
|