Библиотека >> История новоевропейской философии в ее связи с наукой
Скачать 344.21 Кбайт История новоевропейской философии в ее связи с наукой
"Аристарх Самосский, - пишет Архимед, - выпустил в свет книгу о некоторых гипотезах, из которых следует, что мир гораздо больше, чем понимают обычно. Действительно, он предполагает, что неподвижные звезды и Солнце находятся в покое, а Земля обращается вокруг Солнца по окружности круга, расположенной посредине между Солнцем и неподвижными звездами, а сфера неподвижных звезд имеет тот же центр, что и у Солнца, и так велика, что круг, по которому, как он предположил, обращается Земля, так же относится к расстоянию неподвижных звезд, как центр сферы к ее поверхности. Но хорошо известно, что это невозможно: так как центр сферы не имеет никакой величины, то нельзя предполагать, чтобы он имел какое-нибудь отношение к поверхности сферы. Надо поэтому думать, что Аристарх подразумевал следующее: поскольку мы подразумеваем, что Земля является как бы центром мира, то Земля к тому, что мы назвали миром, будет иметь то же отношение, какое сфера, по которой, как думает Аристарх, обращается Земля, имеет к сфере неподвижных звезд".
Аргумент Архимеда опирается на невозможность допущения отношения между какой-либо величиной и нулем, т.е. на невозможность допущения бесконечности. Этот аргумент по существу отсылает нас к аксиоме Евдокса (или, как ее часто называют, аксиоме Архимеда), которая сформулирована Евклидом в четвертом определении V книги "Начал": "Говорят, что величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга". Вот почему Птолемей, вроде бы отождествляющий Землю с точкой, нигде не говорит о том, что в результате небо оказывается "подобным бесконечности". И не случайны его оговорки, что Земля "подобна точке", "сравнима с точкой", "есть как бы точка": Земля есть точка в силу невозможности достигнуть абсолютной точности при измерениях, т.е. она есть точка приблизительно, ее величиной можно пренебречь при расчетах. Птолемей не допускает утверждения, что небо бесконечно или даже "подобно бесконечности" не только в силу аргумента "от математики", какой мы видим у Архимеда, но и в силу аргумента "от физики": если бы величина "небесного свода" была бесконечной, то его движение вокруг Земли было бы невозможным - вспомним аргументацию Аристотеля против возможности существования "бесконечно большого тела". По Аристотелю, бесконечно большое тело не могло бы ни двигаться, ни покоиться, к нему вообще не могли бы быть применены все те определения, которые применяются к конечным телам. Характерно, что это фундаментальное положение физики Аристотеля разделяет и Коперник: "Вследствие известной физической аксиомы, что бесконечное не может быть ни пройдено, ни каким-либо образом приведено в движение, небо необходимо остановится". Но Копернику-то как раз и нужно "остановить" небо! Ведь тезис о том, что движется Земля, а небесный свод неподвижен, есть исходный пункт его гелиоцентрической системы! А поэтому как раз та аксиома, что бесконечному невозможно двигаться, которая для древней астрономии служила аргументом в пользу конечности Вселенной, используется теперь Коперником как дополнительный - и очень веский - аргумент в пользу тезиса о неподвижности неба. "Ибо самое главное, - говорит он, - чем старались обосновать конечность мира, это и есть движение". Коперник, таким образом, не доказывает бесконечности Вселенной (из его четвертого постулата самого по себе такой вывод не следует), но охотно допускает эту бесконечность, ибо такое допущение сильно подкрепляет его идею о движении Земли. Потому он и называет в числе своих важнейших "гипотез" утверждение о том, что "мир неизмерим и подобен бесконечности". Правда, научная добросовестность заставляет Коперника сделать при этом оговорку: "Предоставим естествоиспытателям (видимо, имеются в виду "физики", которые еще и в эпоху Коперника решали принципиальные теоретические вопросы о структуре космоса, как это требовалось научной программой Аристотеля. - П.Г.) спорить, является ли мир конечным или нет". На примере Коперника мы видим, как понятие бесконечности в эпоху Возрождения оказывается темой размышления не только философов и теологов, но и ученых-математиков: допущение бесконечности очень важно для решения собственно астрономических проблем. Вот как описывает ученик Коперника Ретик ход работы своего учителя, который приходит к необходимости принять новые допущения в силу невозможности объяснить наблюдаемые явления с помощью старых допущений: "Господин доктор, наставник мой, наблюдения всех времен вместе со своими собственными всегда имеет перед глазами, собранные в полном порядке, как бы в указателях, а если понадобится что-нибудь или установить, или превратить в практические правила, он идет от первых произведенных наблюдений вплоть до своих собственных и обдумывает, как их согласовать, затем, получив под руководством Урании правильные выводы, он возвращается к гипотезам Птолемея и древних и, наконец, обдумав с величайшей тщательностью, убеждается в силу астрономической ўnЈgkh (необходимости) в том, что их нужно отбросить и принять новые гипотезы, не без некоторого божественного вдохновения и соизволения богов. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
| ||
|