Библиотека >> История новоевропейской философии в ее связи с наукой
Скачать 344.21 Кбайт История новоевропейской философии в ее связи с наукой
Определение, приведенное Спинозой, дано не кем иным, как Евклидом, у которого мы читаем: "Круг есть плоская фигура, содержащаяся внутри одной линии, на которой все из одной точки внутри фигуры падающие прямые равны между собой".
Точно так же, как и Гоббс, Спиноза видит в действии, с помощью которого строится фигура, причину, позволяющую раскрыть саму сущность данной фигуры, а уже из сущности ее можно вывести и ее свойства. "Если данная вещь - сотворенная (а несотворенной является только субстанция. - П.Г.), то определение должно будет... содержать ближайшую причину. Например, круг по этому правилу нужно будет определить так: это фигура, описываемая какой-либо линией, один конец которой закреплен, а другой подвижен; это определение ясно охватит ближайшую причину". Именно из определения через конструкцию можно, согласно Спинозе, вывести и такое свойство круга, как одинаковое расстояние всех точек окружности от центра. Гоббс, Спиноза и Лейбниц, так же как и их античные и средневековые предшественники, видят задачу науки в познании предмета на основании его причины, однако само понимание причины, как видим, меняется. В математике такая причина усматривается в способе порождения математического объекта и - соответственно - его понятия. Представление о том, что в основе достоверного знания о предмете лежит деятельность, производящая этот предмет, возникает, как видим, задолго до Канта. И Спиноза, и Гоббс, несомненно, согласились бы с Кантом в том, что задача геометра "состоит не в исследовании того, что он усматривал в фигуре или в одном лишь ее понятии, как бы прочитывая в ней ее свойства, а в том, чтобы создать фигуру посредством того, что он сам, а priori, сообразно понятиям мысленно вложил в нее и показал (путем построения). Он понял, что иметь о чем-то верное априорное знание он может лишь в том случае, если приписывает вещи только то, что необходимо следует из вложенного в нее им самим сообразно его понятию". Однако это суждение Спиноза или Гоббс признали бы истинным лишь по отношению к такой науке, как геометрия, но не по отношению к физике. Так, Гоббс проводит решительное различие между математикой как наукой априорной (а потому и полностью доказательной) и физикой как наукой апостериорной, которая не в состоянии все свои выводы сделать столь же необходимыми, как математические. И аргументация Гоббса очень характерна: геометрические фигуры творим мы сами, а природный мир сотворен Богом, и потому мы не в состоянии непосредственно познать сущность явлений из их причин. "То, что геометрия... является строго доказательной, обусловлено тем... что мы сами рисуем фигуры. Предметы же и явления природы, напротив, мы не в состоянии производить по нашему усмотрению. Эти предметы и явления созданы по воле Бога, и, сверх того, большая часть их, например эфир, недоступна нашим взорам. Поэтому мы и не можем выводить их свойства из причин, которых не видим". В результате науки о природе Гоббс не относит к чистым наукам, какими являются математические (арифметика и геометрия), а в соответствии с давней, еще средневековой традицией относит их к наукам прикладным, хотя и математическим. Сюда Гоббс относит, кроме физики, астрономию и музыку. Все эти науки устанавливают причины наблюдаемых в природе явлений, но устанавливают их не непосредственно, а путем умозаключений, косвенно, а потому и причины эти могут иметь только гипотетический характер. "Исходя из видимых нами свойств, мы можем посредством умозаключений познать, что могли существовать те или иные причины этих свойств. Мы называем этот вид доказательства доказательством а posteriori, а науку, применяющую этот метод, - физикой. Поскольку, однако, при познании явлений природы, имеющих своей основой движение, нельзя делать заключений от последующего к предыдущему без знания тех следствий, к которым ведет определенная форма движения, и нельзя делать заключений относительно следствий движения без знания количества, т.е. без геометрии, то и физик необходимым образом вынужден пользоваться кое-где в своей науке методом доказательства а priori. Вот почему физика - я имею в виду настоящую физику, построенную на математике, - обычно причисляется к прикладным математическим наукам". Мысль о том, что физические законы могут быть в такой же мере результатом конструкции, как и законы математические, чужда Гоббсу, приверженцу английской философской традиции с характерным для нее эмпиризмом. В этом пункте Гоббс не разделяет стремления Галилея конструировать не только математические объекты, но и физические. Вслед за Галилеем идею конструкции физического объекта поддержал Декарт. В конце IV книги "Начал" Декарт пишет: "Я почту себя удовлетворенным, если объясненные мною причины (выше он говорит: "придуманные мною".- П.Г.) таковы, что все действия, которые могут из них произойти, окажутся подобными действиям, замечаемым нами в явлениях природы..." Хотя и очень осторожно, и со множеством оговорок, но Декарт здесь защищает идею конструкции применительно также и к физике. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
| ||
|