Библиотека >> Процессы и структуры в мышлении (Курс лекций)
Скачать 150.19 Кбайт Процессы и структуры в мышлении (Курс лекций)
Потом я беру третью палку С, накладываю ее на палку В и получаю второе знание: С больше В.
Теперь представьте себе, что я хочу получить знание об отношении между А и С. На первых этапах развития мышления и знаний существует всего один путь, чтобы получить это знание: надо палку С наложить на палку А. Это будет точно такая же процедура, какой я пользовался при сравнении объектов А и В и В и С, а это знание будет точно таким же эмпирическим знанием, как два первых. Теперь, как вы знаете, мы действуем совершенно иначе. Если мы уже знаем, что В больше А, а С больше В, то мы можем совершенно формально утверждать, что, следовательно, С будет больше А. Здесь очень характерной является эта добавка "будет" – показатель будущего времени. Мы не выяснили еще, что С актуально больше А, но мы утверждаем, что С будет больше А, если мы наложим их друг на друга. Подобное утверждение называют выводом. Но для того чтобы можно было осуществить вывод, нам необходимо, кроме исходных знаний – В больше А и С больше В, еще одно знание совсем особого порядка – постулат или принцип: если вторая величина больше первой, а третья величина больше второй, то всегда третья величина больше первой. Этот принцип представляет собой особое правило, дающее нам возможность строить определенное утверждение на основе двух других утверждений. Вам может показаться, что переход от посылок или условий к выводу – вещь совершенно очевидная и не нужно никакого дополнительного общего правила или принципа, чтобы его совершать. Но это лишь видимость. На самом деле такое дополнительное знание является необходимым условием всякого формального вывода. В этой связи я хотел бы обратить ваше внимание на то, что сопоставление объектов может происходить непосредственно в их плоскости, и мы будем получать соответствующие характеристики: больше, меньше, равно. Если же теперь представить себе, что наши объекты предварительно измерены и каждый из них получил определенную числовую характеристику и что затем мы захотим сравнивать их друг с другом с помощью этих числовых характеристик, то нам обязательно понадобится в качестве непременного условия этого сопоставления стандартизация или универсализация эталона измерения. Если такой стандартизации не будет проведено, то, сопоставляя между собой числовые значения, мы не сможем сделать никакого вывода. Таким образом, мы сможем получить характеристику "больше", "меньше" или "равно", работая на разных уровнях замещения и описания объектов. И в зависимости от того, на каком уровне мы будем получать наш вывод, нам понадобятся разные средства и условия для его построения. Кстати, в связи с этим меняется и значение самих характеристик "больше" или "меньше". Например, в отнесении к числовому ряду эти характеристики означают, соответственно, – вправо или влево по числовому ряду. При отнесении этих же выражений непосредственно к объектам они имеют совершенно иное значение. Хотя три факта – В больше А, С больше В, С больше А – могут миллионы раз сосуществовать, т.е. встречаться вместе, но из них еще нельзя будет сделать общего вывода. Мы имеем здесь случай типичного индуктивного обобщения. Необходимость следования третьего утверждения из двух первых появляется только тогда, когда от естественного мира мы переходим к миру искусственному, конструируемому нами. Там мы можем вводить принцип всеобщего значения: "всегда" – это значит во всех сконструированных нами случаях, причем особым образом сконструированных. Лишь затем, обратным движением, этот принцип приобретает значение нормы и для всех естественных случаев. Тогда он скрывает в себе индуктивную неопределенность массы эмпирических случаев. Поскольку мы теперь апеллируем уже к принципу, эта неопределенность теряет свой явный характер. Вместе с тем происходит перевертывание оснований. Вы утверждаете, что если вторая величина больше первой, а третья больше второй, то третья будет также больше первой. А если вдруг случится в какой-то эмпирической области, что это не так, вы скажете тогда, что то, с чем вы имеете дело, не величины. После того, как вы сформулировали такой общий принцип, вы получаете возможность выводить из первых двух посылок третью. И вы говорите, что первые два утверждении – основание или причина, а третье утверждение – следствие. Здесь совершенно отчетливо выступает та форма представления объективной действительности, которую создает этот принцип благодаря своей структуре "если..., то..." (ср. это с очень интересными рассуждениями А.А.Зиновьева в его работе "Логическое и физическое следование"). Эти общие принципы получили название аксиом вывода, и каждый тип вывода предполагает свою особую аксиому. А сам по себе тип вывода характеризуется рядом признаков, фиксируемых в правилах. Пример: правило, запрещающее учетверение терминов силлогизма. Значит, условием появления вывода как некоторого формального перехода от одних знаний к другим является появление особого знания, которое выражает само правило перехода. Только в этих случаях появляется вывод или умозаключение. Опираясь на это понятие, мы можем теперь по-новому взглянуть на рассуждения Галилея и Гюйгенса. | ||
|