Библиотека >> История греческой философии в ее связи с наукой
Скачать 225.49 Кбайт История греческой философии в ее связи с наукой
Более того, указывая на "малость" этих "исходных" тел, Платон опять вызывает ассоциацию между ними и физическими атомами. И все же, несмотря на все эти характеристики, нам представляется, что Платон не мыслил свои "треугольники" и "многогранники" как физические тела, а все приведенные их определения надо отнести за счет того - "не истинного, а лишь правдоподобного" - способа рассуждения, о котором было сказано с самого начала. Реальностью, в которой воплощаются все эти фигуры, является материя, понятая не как вещество, а как пространство: двухмерное - для треугольников (плоскость), трехмерное - для многогранников (объем). В этом смысле, нам кажется, ближе к истине то истолкование этих платоновских "тел", которое предлагает В. Гейзенберг.
Вопрос о том, как понимает Платон "материю", является одним из самых трудных; вокруг него всегда велось много споров, которые не прекращаются и сегодня. Но, учитывая особенности платоновской математической программы, можно полагать, что, по крайней мере, в сочинениях позднего Платона материя и в самом деле понимается как пространство. Об этом недвусмысленно говорит и Аристотель в "Физике": "...с этой точки зрения место будет формой каждого тела, а поскольку место кажется протяжением величины - материей, ибо протяжение есть иное, чем величина, оно охватывается и определяется формой, как бы поверхностью и границей. А таковы именно материя и неопределенное... Поэтому Платон в "Тимее" и говорит, что материя и пространство - одно и то же, так как одно и то же восприемлющее и пространство". А как понимает Платон пространство и в каком смысле пространство является условием возможности геометрических объектов ("началом геометров"), об этом мы уже говорили выше. То, что Платон отождествляет материю ("мать-восприемницу") с пространством, признают многие исследователи. Так, В. Шадевальдт пишет по этому поводу: "На месте материи у Платона в качестве "матери и кормилицы" всего сущего стоит чисто воспринимающее... Это чисто воспринимающее есть, согласно Платону, чистое, невидимое, лишенное образа пространство..." Эту точку зрения разделяет и Э. Франк: "Субстанцией (материей) тела, остающейся неизменной и тождественной при всей смене чувственных определений, является здесь у Платона пустой пространственный образ (пространственное очертание) тела, атома независимо от того, имеет ли этот последний форму куба, тетраэдра или другого правильного многогранника..." Таким образом, и платоновские "атомы", будем ли мы рассматривать в качестве таковых треугольники или правильные многогранники, следует мыслить как геометрические пространственные образования. Этим они отличаются от атомов Демокрита как мельчайших физических тел. Поэтому представляется справедливым высказанное В.П. Зубовым соображение о том, что "Платон вовсе не мыслил образование "стихий" из элементарных треугольников как некий реальный, физический процесс" - и это несмотря на то, что сам способ, каким обсуждается в "Тимее" процесс сотворения космоса, дает, как мы выше видели, повод для такого физического толкования платоновских "тел". Завершая рассмотрение платоновской "физики", отметим важнейшие ее особенности, связанные со спецификой платоновского понимания науки в целом. 1. Платон не считает научно достоверным такой род знаний о природе, какой назывался "физикой" в его время и был представлен в теориях натурфилософов - Фалеса, Анаксимена, Эмпедокла, Анаксагора, Демокрита и др. Поскольку же речь все-таки заходит о структуре космоса и о физических явлениях и поскольку Платон сам о них говорит, он считает свои построения не более как "правдоподобным мифом". 2. Платон в "Тимее" делает попытку выявить в природном мире все то, что может быть предметом изучения математики и тем самым впервые в истории строит в сущности вариант математической физики. Он считает, что в мире природы достоверное знание мы можем получить ровно в той мере, в какой раскроем математические структуры этого природного мира. Именно этим обстоятельством, на наш взгляд, объясняется интерес к "Тимею" ученых эпохи эллинизма, средних веков и эпохи Возрождения - вплоть до Галилея. 3. Однако платоновское представление о том, как соотносятся между собой физические свойства и качества вещей с лежащими в их основе математическими структурами, так же как и понимание самих этих структур, является весьма специфическим и глубоко отличным от того представления, которое сложилось в науке нового времени. Платон искал посредствующее звено между числом и геометрическим объектом, и он нашел его - эту посредствующую реальность он увидел в "пространстве". Но ему не удалось найти посредствующее звено между чувственным миром, как он дан в эмпирическом опыте, и математическими объектами, как они существуют сами по себе. Поэтому он и не считал возможным научно исследовать природу, а свою работу, проделанную в "Тимее", осуществлял в форме непосредственного соотнесения чувственного мира с лежащим в его основе математическим "миром тождественного". Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
| ||
|