Библиотека >> История греческой философии в ее связи с наукой
Скачать 225.49 Кбайт История греческой философии в ее связи с наукой
Как понять смысл последнего замечания? В чем отличие величины от "времени и людей"? Это отличие Аристотель видит в том, что если величина, получаемая в результате деления, сохраняет в себе как бы "в снятом виде" пройденные этапы, становясь все меньше и меньше, то время, протекшее до настоящего момента, исчезает, не сохраняясь. Характерно, однако, что в этом последнем смысле, как говорит Аристотель, "бесконечное будет актуальным". Это замечание может ввести в заблуждение, если не принять во внимание оговорки Аристотеля, что "бесконечное как энтелехия" (т.е. осуществленное и в этом смысле актуальное) существует по совпадению; другими словами, актуальным будет "день или состязание", а не само бесконечное. Итак, отвечая на вопрос о том, существует ли бесконечное, Аристотель формулирует один из кардинальных тезисов своей научной программы: бесконечное существует потенциально, но не существует актуально. Иначе говоря, бесконечное не пребывает как нечто законченное, а всегда становится, возникает; оно не есть что-то действительное, а только возможное. Но отсюда с очевидностью следует, что бесконечное для Аристотеля есть материя, ибо именно материя определяется им с самого начала как возможность. "Бесконечное есть материя для завершенности величины и целое в потенции, а не актуально, оно делимо и путем отнятия и путем обращенного прибавления, а целым и ограниченным является не само по себе, а по-другому; и поскольку оно бесконечно, не охватывает, а охватывается". Хотя Аристотель и полемизирует с Платоном и пифагорейцами относительно логического и онтологического статуса бесконечного, тем не менее, определяя бесконечное как нечто неопределенное (ибо материя сама по себе, без формы, есть нечто неопределенное), он остается на почве характерной для греков, в том числе и для Платона, "боязни бесконечного". Платон также считает (диалог "Парменид"), что если нет единого, то ничто не может ни существовать, ни быть познаваемо, ибо беспредельное само по себе неуловимо для мышления. Аналогично рассуждает и Аристотель, связывая бесконечное с материей: "Поэтому оно и непознаваемо как бесконечное, ибо материя не имеет формы". И в самом деле, имея дело с потенциальной бесконечностью, мы всегда, как уже отмечалось, схватываем (т.е. познаем) лишь конечное - бесконечность же выражается тут в том, что это конечное "всегда иное и иное". Аристотелевское понимание бесконечности как материи, или потенциальности, имеет огромное значение для его обоснования как физики, так и математики. Аристотель различает бесконечное от деления и бесконечное от прибавления (т.е. интенсивную и экстенсивную бесконечности) в одном отношении, а именно: бесконечное от прибавления не может превзойти всякую определенную величину, а бесконечное от деления может. "Превзойти всякую величину путем прибавления невозможно даже потенциально, - говорит Аристотель, - если только не будет по совпадению бесконечного, как энтелехии" (курсив мой. - П.Г.), о чем шла речь выше. Откуда же берется такое "неравенство" экстенсивной и интенсивной бесконечности? Бесконечное - это материя, оно не охватывает, а охватывается; в случае интенсивной бесконечности мы имеем определенную величину, допустим, отрезок известной длины, ограниченный двумя точками - границами, полагающими ему предел (границы эти суть момент формы), т.е. охватывающими его. Здесь бесконечное охватывается своими "концами", деление происходит внутри охваченного. Напротив, когда речь идет об экстенсивной бесконечности, то величина неограниченно растет, и охватывать тут должна была бы уже не форма (ибо тут границы нет, она убегает в бесконечность), а сама материя, что, согласно ранее сказанному, невозможно. Одним словом, величина может бесконечно уменьшаться, но она не может бесконечно расти. Обратное мы имеем в случае числа: оно может бесконечно расти, но не может бесконечно уменьшаться; ведь его нижний предел - единица - не может быть превзойден, иначе оно перестанет - для грека - быть числом. Эту "обратную зависимость" числа и величины Аристотель характеризует в следующем отрывке, вскрывая при этом их глубокую внутреннюю связь: "...для числа имеется предел в направлении к наименьшему, а в направлении к наибольшему оно всегда превосходит любое множество, для величин же наоборот: в направлении к большему бесконечной величины не бывает. Причина та, что единица неделима, чем бы она ни была... А в направлении к большему множеству всегда можно продолжать мысль, так как дихотомические деления величин бесконечны". Последняя фраза этого отрывка может вызвать недоумение: ведь Аристотель всегда отличает число (множество) и величину, а тут они как бы отождествляются. В действительности же здесь, конечно, никакого отождествления нет, а скорее устанавливается именно что-то вроде "обратной зависимости": Аристотель рассматривает процесс дихотомического деления определенной величины как процесс порождения числового ряда. Здесь хорошо видна связь двух "пределов": тот самый предмет, который служит нижним пределом числового ряда - единицей, является верхним пределом для величины; так что мера для числа - его единица - оказывается мерой и для величины, образно говоря, ее единицей; только для числа единица - это начало счета, а для величины - конец ее роста. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
| ||
|