Библиотека >> История греческой философии в ее связи с наукой
Скачать 225.49 Кбайт История греческой философии в ее связи с наукой
Гроссетет относит уже к свету: свет - это и есть интеллигибельная материя, и математика изучает его законы.
"Интеллигибельная материя" и обоснование геометрии Одной из труднейших в идеалистической философии Платона является проблема: каким образом чувственные вещи оказываются "причастны" идеям? Что представляет собой эта причастность? Именно в этом пункте идеализм Платона был подвергнут критике со стороны его ученика Аристотеля, выявившего целый ряд затруднений, связанных с теорией идей. Эта же трудность получила свое выражение и в платоновской теории математического знания. По-видимому, обращение Платона к пифагорейству, особенно в поздних его диалогах, в том числе и в "Тимее", не в последнюю очередь было вызвано попыткой рассмотреть проблему "причастности" как проблему соотношения чисел и геометрических объектов. Более того, при чтении поздних диалогов Платона иногда возникает впечатление, что именно этот второй (математический) способ рассмотрения вытеснил собой первый и что вопрос о том, каким образом вещи "подражают" идеям, теперь стоит в такой форме: как геометрические объекты "подражают" числам? Здесь проблема причастности вещей идеям приобрела новый вид: как соотносятся идеальные образования - числа - с математическими объектами - точками, линиями, плоскостями, углами, фигурами? Ведь числа, по Платону, - это идеи; что же касается геометрических объектов, то они носят характер "промежуточный" между идеями и чувственными вещами. Они уже обременены некоторого рода "материей", которую Прокл называет "интеллигибельной". Аристотель следующим образом поясняет, как платоники переходят от чисел к геометрическим величинам: "что же касается тех, кто принимает идеи... то они образуют величины из материи и числа (из двойки - линии, из тройки - можно сказать - плоскости, из четверки - твердые тела...)". О какого рода "материи" здесь идет речь, мы выше уже говорили. Посмотрим, однако, каким же образом из чисел образуются величины. О том, что такое число у Платона, мы кое-что уже знаем благодаря анализу проблемы единого и многого. В результате этого анализа мы выяснили, что мир идеального - это определенным образом возникающая система, что ни единое не может ни существовать, ни быть познаваемо без соотнесенности с "другим", ни многое не может ни существовать, ни быть познаваемо без соотнесенности с единым. Эта соотнесенность, единство противоположностей, как раз и дает начало числу. Единица - это, собственно, не число, а "начало" чисел вообще, это единое, вносящее принцип определенности в беспредельное. Единица арифметиков - это "единое", организующее и порождающее числовой ряд. Но, как мы знаем, единое для порождения числового ряда нуждается в "партнере" - неопределенной двоице, которая у Платона выступает как "начало иного". Как мы помним, двойка - это "иное" единого и, как таковая, тоже принадлежит идеальному миру. Множество, как мы помним, рождается, по Платону, из единого и "неопределенной двоицы"; не случайно Платон так близок к пифагорейцам: ведь тройка, согласно Филолаю, это - "первое число", первое соединение единицы с неопределенной двойкой. Здесь возникает затруднение, на которое обратил внимание Аристотель. "Если идеи - это числа, - говорит он, - тогда все единицы нельзя ни сопоставлять друг с другом, ни считать несопоставимыми между собой...". В самом деле, если единица - это единство, а "двойка", содержащая "единое и иное", может быть названа идеей "различия", тройка, далее, соединяющая посредством третьего члена "единое" и "иное", может быть названа тождеством единства и различия, т.е. "целым" и т.д., то Аристотель прав: тут нет абстрактных, безразличных друг другу единиц, "которые можно сравнивать между собой". Напротив, двойка, тройка, четверка и т.д. - это определенным образом организованные структуры, где каждая из "единиц" не может рассматриваться сама по себе. В то же время в арифметике мы "считаем" единицы, а значит, они не могут быть несопоставимы между собой. Аристотель действительно отмечает здесь ту трудность, которая толкала Платона и особенно его учеников - Спевсиппа и Ксенократа - к различению идеальных чисел и чисел математических. Но поскольку сам Платон, насколько мы знаем, этого различия еще не проводил, а различал лишь числа и геометрические объекты, то мы и обратимся к этому различению. Геометрические объекты получаются, как мы уже помним, "из материи и числа". "Интеллигибельная материя" - это пространство. Что означает соединение чисел с пространством? Начнем с единицы. Соединение единицы с пространством дает первый геометрический объект - точку. Точка - это "единица, имеющая положение" (Аристотель). Но, получив положение, единица тем самым приобщается к "незаконнорожденному виду" бытия, отличного от идеальной - логической - стихии, которой единица до этого принадлежала. Точка содержит в себе уже два ряда свойств: одни - унаследованные от отца - единицы (от мира идей), другие - приобретенные от матери - неопределенного пространства. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
| ||
|