Библиотека >> История греческой философии в ее связи с наукой
Скачать 225.49 Кбайт История греческой философии в ее связи с наукой
От единицы точка наследует свою неделимость; отсюда и ее определение: "точка - это то, что не имеет частей" (см.: "Начала" Евклида, кн. I, определение 1). Точку нельзя разделить потому, что она есть "воплощенное в пространстве" единое, а единое неделимо по определению. Но у точки появляется и свойство, совершенно чуждое единице - жилице мира идей: она движется и своим движением порождает линию. Этим свойством она обязана матери - интеллигибельной материи - пространству. И движется она именно в интеллигибельной материи, а не в чувственном мире, т.е. в воображении, а не в чувственном восприятии.
В результате этих противоположных определений точка, с одной стороны, является границей (это в ней от единого, оно же предел), а с другой - может безгранично двигаться (беспредельное), порождая линию. Очень характерны в этом отношении те определения, которые дает точке Прокл в комментариях к Евклиду. Говоря о том, что точка - это монада, наделенная положением, Прокл замечает, что благодаря этой наделенности положением она Щn fantasЕa proteinetai (простирается в воображении), а потому точка Ьnul'n Щsti katІ tЊn nohtЊn џlhn (оматериалена через интеллигибельную материю) и в этом смысле есть нечто swmatoeidhV (теловидное). Перейдем к двойке. Что будет с двойкой, если она соединится с интеллигибельной материей - пространством? Двойка - это "единое и иное", это начало различия, когда единое перестает быть абсолютно единым и вступает в контакт с иным. Строго говоря, когда единица становится пространственной, т.е. вступает в контакт "с положением", а значит, с "иным", чем она сама, она уже двойка. И действительно, со стороны того определения, которое она получает от этого контакта, от "положения" (пространственности), она есть движущееся; а движущаяся точка - это линия. (Правда, не будем забывать, что со стороны первого своего определения - единицы - точка есть граница, т.е. нечто устойчивое, неподвижное, закрепляющее.) Но можно провести рассуждение и иначе. Если взять двойку не со стороны "материи" (движущаяся точка), а со стороны ее числово-идеального "отца", то она есть две единицы. Две единицы, соединившиеся с пространством (т.е. с положением), будут двумя точками. Линия со стороны числа, т.е. своего логического, а не пространственного происхождения, определяется через "две точки". Таково ее определение у Евклида: "Концы же линии - точки" (кн. I, определение 3). Вот почему среди греческих математиков само собой разумелось, что линия - это двойка. Через двойку далее можно определять линию не только логически, но и "в воображении", т.е. погружая "двойку" в "интеллигибельную материю"; такое определение, однако, в отличие от первого будет включать в себя движение (cЕnhsiV fantasticї), а потому будет не логическим определением, а требованием осуществить некоторое действие - постулатом. Первый постулат Евклида гласит: "Требуется, чтобы можно было через всякие две точки провести прямую". Займемся теперь тройкой. В сущности, тройка у Платона является первым числом: ведь единица и "неопределенная двоица" - это скорее "начала" чисел, чем сами числа. Тройка же представляет собой единство единицы и двойки, т.е. начала ограничивающего и безгранично-неопределенного. Двойка, выражающая начало "различия", соединившись с материей-пространством, предстает как линия, неограниченно продолжающаяся в обе стороны. У двойки, как мы знаем еще из разбора пифагорейской математики, нет "середины", которая "удержала" бы ее "концы", "скрепила" бы их друг с другом. В тройке эта середина налицо, а потому тройка - нечетное число - устойчива и довлеет себе. Но как в пространстве соединяется двойка-линия с единицей-точкой? Возьмем точку вне прямой и соединим ее отрезками с концами прямой; тем самым мы произведем операцию в пространстве, аналогичную соединению трех единиц или двойки и единицы. В результате мы получим новый геометрический объект - треугольник. (Построение правильного, т.е. равностороннего треугольника на данной ограниченной прямой, или операция нахождения точки, равноотстоящей от двух других точек ("концов" прямой) - первая теорема I книги "Начал" Евклида.) В результате соединения точки с прямой (единицы с двойкой в пространстве) прямая больше уже не может неограниченно продолжаться в обе стороны: третья точка "держит" оба ее конца. Как "тройка" - первое настоящее число, так и треугольник - первая пространственная фигура: точка и линия - это элементы, "начала", из которых строятся геометрические фигуры. При этом "переведении" чисел в пространство каждое новое число представляет пространственный элемент нового измерения: единица не имеет измерений ("не имеет частей"); двойка имеет одно измерение - "длину без ширины" ("Начала" Евклида, кн. I, определение 2); тройка имеет два измерения - длину и ширину. Треугольник, таким образом, есть "первая" (не во временн(м, а в логическом смысле) плоскость, ибо тройка означает два измерения. Наконец, четверка, соединившись с "материей" пространства, даст в результате три измерения. Если возьмем точку, лежащую вне нашего треугольника, и соединим ее с вершинами последнего, то получим уже трехмерное тело - пирамиду (тетраэдр), которая будет парадигмой, образцом объемных образований, "первым телом" опять-таки в логическом плане. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
| ||
|