Библиотека >> История греческой философии в ее связи с наукой
Скачать 225.49 Кбайт История греческой философии в ее связи с наукой
Франка, и потому он ими пренебрегает.
Существует, однако, весьма серьезная методологическая проблема, которую мы здесь не можем обойти молчанием. Связана она с тем, что практическая работа ученого - математика, физика, биолога - подчас может быть весьма плодотворной также и без специального уяснения им своих методологических предпосылок и фундаментальных понятий. По этому поводу интересно привести замечание П. Дюгема. "Даже самый знающий геометр, - пишет он, - не мог бы определить пространство; но люди, хотя бы немного изучавшие геометрию, могут между собой говорить о пространстве без всякого опасения, вовсе не сговариваясь; они знают все, что можно утверждать о пространстве, а что - отрицать... они все согласны, что между двумя любыми точками можно провести прямую линию..."71 Геометры знают также, продолжает Дюгем, что такое время; они рассуждают, не пытаясь определить, ни что такое пространство, ни что такое время и движение, и при этом прекрасно понимают друг друга72. То, о чем говорит Дюгем, как раз составляло характерную черту раннепифагорейской математики. Пифагорейцы не уточняли понятий пространства, времени, они даже не ставили вопроса о том, рассуждают ли они о физическом теле или математической фигуре, когда говорили, что "вещи состоят из чисел", и при этом, как верно отмечает Дюгем, они вполне понимали друг друга и вполне правильно решали задачи и делали математические открытия. Более того, и позднейшие математики (в том числе и из пифагорейцев) продолжали "работать" без предварительного определения исходных понятий (пространства, времени, движения), хотя время от времени возникающие противоречия привлекали их внимание к вопросам, связанным с онтологическим статусом математических понятий и операций. Именно эта особенность математики (и не только математики), при которой ученый может работать в определенных рамках, не давая себе полного отчета во всех своих понятиях, является очень важным моментом для анализа эволюции науки и рассмотрения связей и взаимоотношений математика или физика с философом, размышляющим над проблемами обоснования науки. В этой связи возникает вопрос: существенно ли для деятельности ученого-математика то различие, которое мы видим, например, между Демокритом и Платоном в понимании неделимого? В античной литературе концепция Демокрита противопоставлялась концепции Платона в двух отношениях: во-первых, у Демокрита атом - физическое тело, у Платона неделимое - математическая точка, или линия, или плоскость. Во-вторых, и это вытекает из первого, у Демокрита тела (чувственного мира) слагаются из атомов, т.е. мельчайших тел того же измерения, а у Платона и пифагорейцев тела слагаются из элементов другого измерения, т.е. из плоскостей, плоскости, в свою очередь, из линий, а линии - из точек. Над этим вопросом размышлял В.П. Зубов. Он пришел к выводу, что, несмотря на указанное различие, математик мог усматривать для себя в этих концепциях один и тот же смысл, так как "в практическом отношении, при "пересчитывании", не было никакой существенной разницы, мыслились ли элементы подобных конечных множеств как точки или как тела. Вот почему не случайно античные критики брали подчас оба толкования в одни скобки, а возрождение пифагорейских (или платоно-пифагорейских) концепций позднее порою происходило "под знаменем Демокрита""73. Видимо, Зубов в значительной мере прав; его допущение объясняет также, а это немаловажно, тенденцию к сближению пифагорейцев (и даже Платона) с Демокритом в период позднего средневековья и особенно в эпоху Возрождения. Однако это "взятие в одни скобки" имеет и свои границы. В этом отношении показательно цитированное нами высказывание Архимеда, который строго различает доказательство определенного положения, проведенное средствами математики (т.е. теоретическое обоснование его), и усмотрение того же положения с помощью механических средств (практическое усмотрение). Это различение, проведенное великим математиком поздней античности в "Письме к Эратосфену", свидетельствует о том, что хотя научное исследование и может подчас происходить без специальной философской рефлексии относительно своих собственных оснований, но только до определенного момента: у тех, кого мы справедливо относим к классикам науки, забота о теоретическом обосновании собственной деятельности составляет важный момент последней. Глава четвертая ГРЕЧЕСКОЕ ПРОСВЕЩЕНИЕ. СОФИСТЫ И СОКРАТ Софисты. Выявление субъективных предпосылок научного знания До сих пор мы рассматривали направления развития философии, которые имеют одну общую особенность: в них еще нет достаточно развитой рефлексии по поводу самой теоретической деятельности и ее оснований, внимание еще сосредоточено на тех результатах, которых достигает научно-философское мышление, а не на самом процессе этого мышления. Правда, нужно и здесь ввести различение: ионийские натурфилософы еще очень близко стоят к мифологическому способу постижения мира, шаг вперед по сравнению с ними делают ранние пифагорейцы, но и у них мы находим наряду с попытками ввести математические методы также целый ряд мифологически-метафорических фигур мысли. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
| ||
|