Библиотека >> История античной эстетики. Ранняя классика
Скачать 503.87 Кбайт История античной эстетики. Ранняя классика
е. исходный тон, кварту, квинту и октаву), древние, желая во что бы то ни стало объединить обе последовательности, делали соответственную перестановку в первой последовательности и считали земляной куб за 1, а огненную пирамиду за 2 (так как 1:2 и 2:1, как указано выше, трактовались как нечто тождественное). Широкое понимание отношений давало им для этого полную свободу. Такова была непреодолимая потребность толковать единство всех пропорций, геометрических, стихийных, акустических и арифметических, как единство обязательно чувственное.
6. Гносеологическая пропорция Наконец, мы имеем еще одну область, где Платон мыслит пропорциональное отношение, это – область знания. Не только чувственное восприятие, но и знание также должно быть рассматриваемо с точки зрения пропорции. "...Нам нравится... чтобы первую часть [познавательных способностей] мы называли знанием (epistemen), вторую – рассудком (dianoian), третью верой (pistin) и четвертую – уподоблением (eicasian), причем две последние [способности] вместе – мнением (doxan)..., а первые две – мышлением (noesin). А именно, мнение относится к становлению, мышление же – к сущности. И как сущность относится к становлению, так мышление – к мнению, и как мышление – к мнению, так знание – к вере и рассудок – к уподоблению" (R. P. VII 533e – 534a). Дальше здесь говорится о том, что для ясности рассуждения надо пока отказаться от пропорции самих предметов, к которым эти пропорциональные способности относятся, и сосредоточиться только на самих способностях. Пропорция эта, как видим, сформулирована яснейшим образом. Разумеется, у нас нет возможности входить в анализ всех этих трудных платоновских терминов. Но необходимо отметить два простых обстоятельства. Во-первых, тут говорится о разделении на "сущность" и "становление". С этим мы уже встречались у Платона, и это трудности для нас не составляет. Тут всемирно-историческое разделение на идеальное и реальное, бытие и небытие, смысл и факт, идею и материю и т.д. Во-вторых, каждая из этих областей, в свою очередь, делится здесь на две области – по тому принципу, который мы, не входя в текстовой анализ, прямо назовем здесь интуитивным. Иными словами, возможно чистое поэтическое знание – интуитивное, т.е. дающее свой предмет в его непосредственном существовании (эпистема), и дискурсивное, т.е. дающее свой предмет только в результате ряда логических (рассудочных) переходов, т.е. умозаключений и доказательств (дианоя). Возможно чувственное доксическое знание – интуитивное, когда чувственный предмет дается в своем непосредственном явлении и факте (пистис), и дискурсивное, когда в сознании в результате ряда отображений чувственных предметов возникает ряд "умоуподоблений" сознания этим чувственным предметам. При этом налицо соответствующие обобщающие выводы (эйкасия). При таком подходе к четырем познавательным способностям с полной ясностью устанавливается пропорциональное отношение между ними: чтобы от знания перейти к рассудку, надо исключить интуитивность, и чтобы перейти от веры к уподоблению, надо тоже исключить интуитивность. Это отношение между членами первой пары тождественно с отношением между членами второй пары. А тождество двух отношений есть пропорция. Чтобы покончить с пифагорейско-платоновским учением о пропорциях, обратим внимание еще на одно интересное обстоятельство, которое в науке не раз переоценивалось. Дело в том, что частным видом геометрической пропорции является так называемое золотое деление, начало учения о котором часто приписывали "пифагорейцам" и развернутую теорию которого находили у Платона. В эпоху Возрождения эта "божественная пропорция" фигурировала именно в пифагорейско-платоническом обличии. Если обратиться к первоисточникам, то отчетливых материалов о сознательно проводимой теории золотого деления у Платона мы не найдем. Золотое деление получается из обычной геометрической пропорции путем внесения в нее идеи последовательного убывания чисел. Получается, что целое так относится к своей бoльшей части, как бoльшая к меньшей. Золотое деление, следовательно, есть равновесие между целым и частью, наблюдаемое при последовательном исчерпывании целого. Что мы имеем на эту тему у Платона? Выше мы приводили текст Tim. 31c – 32a. Этот текст прямо формулирует то, что мы теперь называем золотым делением. Но ни сам Платон не употребляет такого термина, ни его последующее изложение не показывает в отчетливой форме способ применения этого закона. Поэтому, строго говоря, использование этого закона у Платона является не столько сознательным и намеренным, сколько интуитивным и непосредственно-эстетическим. Но дело этим не кончается. Как известно, Платон строит свой космос из прямоугольных треугольников двух видов – с равными катетами и с неравными катетами. К первому золотое деление совсем неприложимо; что касается второго рода треугольников, то их может быть бесчисленное множество, но Платон почему-то выбирает именно тот, который получается из разделения равностороннего треугольника пополам его высотой. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
| ||
|