Библиотека >> История античной эстетики. Ранняя классика

Скачать 503.87 Кбайт
История античной эстетики. Ранняя классика



Здесь устанавливается, как потом отмечали комментаторы Платона, три вида пропорции. Первая пропорция гармоническая: на какую часть своей собственной величины один член превосходит другой, на ту же самую часть третьего члена этот последний превосходит второй. Именно, пропорция 1, 11/3, 2 есть гармоническая, потому что второй член получается здесь из первого как путем прибавления к этому последнему одной его трети, так и путем вычитания из третьего одной трети этого последнего. Вторая пропорция – арифметическая: на сколько вторая величина превосходит первую, на столько третья величина превосходит вторую. 1, 11/2, 2 есть пропорция арифметическая, потому что здесь второй член больше первого и меньше третьего на одну и ту же величину 1/2. Наконец, геометрическая пропорция требует, чтобы второй член так относился к первому, как третий ко второму: 1, 2, 4.

Пропорции эти имеют для Платона отнюдь не просто отвлеченно-арифметическое значение. Отвлеченно-арифметических отношений для него вообще не существует. Правда, подробной теории этих пропорций сам Платон не дал, и это развили его комментаторы. Но уже "Тимей" ясно свидетельствует о том, что последовательность: огонь, воздух, земля – пропорция гармоническая, последовательность: огонь, вода, земля – пропорция арифметическая и последовательность: огонь, воздух, вода, земля – пропорция геометрическая.

Необходимо помнить, что отношение огня к земле есть отношение октавы, т.е. 1:2; отношение огня к воздуху есть кварта (т.е. 1:4/3) и отношение воздуха к воде – один тон, т.е. (4/3:3/2). Отсюда уже само собой получалось, что отношение воды к земле равняется кварте, т.е. отношение 3/2:2, и отношение воздуха к воде (оно же отношение огня к воде) оказывалось квинтой, т.е. 4/3:2. И здесь же применяется учение о пропорциях. Отношение 1:3/2:2, т.е. арифметическая пропорция, – отношение огня, воды и земли, а отношение 1:4/3:2, т.е. гармоническая пропорция, – отношение огня, воздуха и земли. Что же касается геометрической пропорции, то, понимая ее в широком смысле слова, Платон трактует ее как равенство отношений между землей и водой и между воздухом и огнем (1:4/3 = 3/2:2). Другими словами, средний член пропорции понимается здесь не количественно, а просто вообще как средний.

Что же означают все эти положения, если перевести их на эстетический язык? Арифметическая пропорция указывает на то, что если мы, например, видим два дерева разной величины и учитываем эту разницу, то такую же разницу мы можем находить и между другой парой деревьев или вообще другой парой вещей. Следовательно, античный глаз все время как бы обмеривает разные вещи, стремясь найти между ними наглядно и структурно видимую аналогию. То же самое и в геометрической пропорции. Что же касается гармонической пропорции, то и она имела для древних наглядно-структурный смысл. А именно, если мы имеем три величины a, b и с, то возьмем сначала разницу между первой и второй и разницу между второй и третьей величинами. Оказывается, что отношение этих двух разниц равно отношению первой величины к третьей. Интуитивно это тоже можно себе легко представить. Если арифметическая пропорция (1:2:3), беря целые числа, говорит о постоянном нарастании предметов на одну и ту же величину, а геометрическая (1:2:4) – о нарастании в одно и то же число раз, то гармоническая пропорция (3:4:6) говорит нам о таком отношении целого и частей, при котором мыслится одинаковость отношения двух каких-нибудь частей к своему положению относительно третьей части.

Таким образом, все это представляет усилия эстетической мысли понять извивную пластичность предмета в ее разнообразно расположенных элементах, причем это разнообразие всегда управляется единым принципом и потому является пропорциональным.

5. Общая сводка

Для лучшего понимания связи между музыкально-акустическими пропорциями и физико-геометрическими телами можно было бы выставить следующие соображения.

Переходя от 1 к 2, мы переходим к тому, что является противоположностью первоначальной единице. Двойка тоже есть некая единица, но уже за пределами первой единицы. Когда античная эстетика искала такого же соотношения в области тонов, то она сталкивалась с октавой, поскольку эта последняя не только акустически равняется отношению 1:2, но и на слух говорит нам о переходе к некоему новому тону, который тем не менее вполне аналогичен первому тону.

Далее, симметрия и пропорция повелительно требовали найти середину между двумя тонами, составляющими октаву. Такой серединой является тон между квартой и квинтой, потому что от тона до кварты столько же, сколько от квинты до октавы. А отсюда уже само собой возникали физические аналогии. Что у древних было наиболее противоположным в их чувственном опыте? Это – земля и огонь, вполне противоположные и по тяжести (плотности), и по подвижности, и по остроте. Значит, отношение между землей и огнем есть октава. А что является серединой между тоном и октавой? Мы уже сказали, что ею является тон между квартой и квинтой.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278