Библиотека >> История античной эстетики. Ранняя классика
Скачать 503.87 Кбайт История античной эстетики. Ранняя классика
И сущностью земли является не твердость, а осязаемость. Это – специфически-осязаемая предметность. Ведь каждой области ощущений и восприятий соответствует свой специфический предмет. То, что Платон, вслед за всей античностью, называет "огнем" и "землей", есть только перевод на античный структурный язык общефеноменологической зрительной и осязаемой предметности. Это две области, которые должны быть связаны между собою при помощи пропорции.
Читаем дальше (32а – с): "...если бы телу вселенной надлежало быть только плоским, без всякой толщины, тогда достаточно было бы и одного среднего члена для того, чтобы он мог связать и два другие члена между собою и себя самого с ним. Но так как ему надлежало быть массообразным [трехмерно-телесным], массы же никогда не соединяются посредством одного и всегда при посредстве двух средних членов, то бог, поместивши в средине между огнем и землею воду и воздух и приведя [все эти элементы], насколько возможно, в такое пропорциональное друг к другу отношение, в котором как огонь относится к воздуху, так воздух к воде, и как воздух относится к воде, так вода к земле, тем самым связал их воедино и таким образом устроил видимое и осязаемое небо. Вот почему именно из этих и именно четырех по числу элементов образовано было тело мира, которое, будучи объединенным при помощи пропорциональности, получило такое взаимоотношение частей, что сплотило в себе воедино и стало недоступным разрешению ни от кого, за исключением разве того, который сам его сотворил". Для ясного понимания этого текста необходимо ответить на два вопроса. Первый: почему геометрическая пропорция между плоскими фигурами допускает, по Платону, только один член, а тело – два члена? Это вопрос математический. И второй: если огонь и земля у Платона есть символ зрительной и осязательной предметности, то какие именно стороны этой предметности вступают в соотношение геометрической пропорции? Это вопрос уже не математический, а эстетический, или, по крайней мере, общеописательный, хотя он внешне и звучит как математический. Первый вопрос допускает только одно решение, которое было предложено Мартеном45 и сводится к следующему. Платон, следуя общеантичной традиции, понимает первые числа (т.е. те, которые делятся только на 1 и на себя и не имеют никаких других составных множителей) как тела линейные; числа, состоящие из двух множителей, он понимает как плоские и, наконец, числа, состоящие из трех составных множителей, – как телесные ("твердые, трехмерно-пространственные "кубы"). В связи с этим, когда дается две плоские фигуры, например два квадрата, то стороны этих квадратов Платон мыслит обязательно как содержащие какое-нибудь первое число мер (1, 3, 5, 7, 11, 13 и т.д.). Отсюда легко понять и то, почему геометрическая пропорция между такими квадратами допускает только один промежуточный член (который, следовательно, и является здесь среднегеометрическим). Пусть стороны двух квадратов будут a и b и допустим, что между ними возможны два прямоугольника со сторонами c и d и е и f, составляющие на своей площади с общим квадратом геометрическую пропорцию, т.е. Тогда a2b2 = aabb = cdef. Если все эти числа суть первые (т.е. их нельзя разложить на составные множители, чтобы эти множители по-разному комбинировать), тогда такое равенство возможно только при условии соответственного равенства всех чисел, порознь взятых, в левой стороне всем числам правой стороны, т.е., что cd = ef. А это значит, что мы взяли не два средних прямоугольника, а только один. И так как a2b2 = c2d2, то cd = ad, т.е. наш средний прямоугольник будет иметь одной стороной сторону первого квадрата, а другой – сторону второго квадрата. Так же легко понять, что между объемами тел можно поместить не один, а два объема, составляющие с ними геометрическую пропорцию. Здесь Платон утверждает элементарную истину. Однако важно, что это делается на основе внесения геометризма в чисто арифметические представления. Для современной математики нет никаких оснований считать первые числа линейными, а составные – плоскими и телесными. Платон же хотел самое отсутствие целых делений внутри первого числа понять геометрически, почему он и уподобил его прямой, имеющей только одно измерение. Он исходил из аналогии первого числа и точки: то и другое нацело "неделимо". Но из ряда точек может создаться только прямая. Следовательно, первые числа, думает Платон, по самой своей природе суть линейные. Уже тут мы видим, что Платон, хочет формулировать пропорциональные отношения в связи с особенностями данного пространственного измерения. Если выше (Epin. 990e – 991b) речь шла у него о пропорции, определяющей возникновение всякого нового измерения пространства вообще, то тут Платон хочет говорить о пропорции, определяющей особенность данного измерения пространства: двухмерные образования допускают один вид пропорционального отношения, трехмерные – совсем другой. Еще более содержательное значение (но все еще связанное с пространственными образами) получает пропорция при рассмотрении второго вопроса, поставленного выше: какова св Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
| ||
|