Библиотека >> История античной эстетики. Софисты. Сократ. Платон
Скачать 690.09 Кбайт История античной эстетики. Софисты. Сократ. Платон
.. Всякое число мы разделили надвое: то, которое может возникнуть в результате помножения [какого-нибудь другого числа] на самого себя, мы, беря образ четырехугольника, назвали равносторонним четырехугольником...; то же число, которое находится между этим, как, например, 3, 5 и всякое, не могущее возникнуть из умножения на себя, но возникающее из умножения большего на меньшее или меньшего на большее, так что стороны его берутся то большими, то меньшими, это число мы, тоже беря отрез продолговатой фигуры, назвали продолговатым числом... Прямые, ограничивающие плоское равностороннее четырехугольное число, мы определили в качестве длины (mкcos) [то есть величинами, измеримыми в линейных мерах]; те же, которые ограничивают число разностороннее – как динамические прямые [неизмеримыми в линейных мерах], поскольку они не соизмеримы по длине с предыдущими, но соизмеримы с теми плоскими фигурами, для которых они являются динамическими. То же самое относится и ко всем [трехмерным] телам".
С первого взгляда этот отрывок не имеет никакого отношения ни к учению о симметрии, ни даже вообще к истории эстетики. Тем не менее всякий, кто внимательно изучил платоновского "Теэтета", невольно обращал внимание на этот отрывок и если его не анализировал, то только потому, что гносеология "Теэтета" по своим темам слишком далека от этого незначительного и вполне случайного арифметически-геометрического эпизода. Речь тут идет именно о симметрии, но, конечно, не в нашем, а в чисто платоновском смысле, что для историка как раз и представляет интерес. Попробуем проанализировать этот отрывок из "Теэтета". Итак, – это ясно раньше всего остального, – Платон устанавливает здесь различие между числами рациональными и иррациональными. Одни числа можно получить из умножения какого-нибудь другого числа на него же самого; другие так нельзя получить. Мы говорим теперь иначе: из одних корень в целых числах извлекается, из других – не извлекается. Для Платона, далее, возникает вопрос: как же можно себе конкретно представить такое иррациональное число? Ведь в арифметическом смысле это есть целое число плюс некоторого рода бесконечная десятичная дробь. Можно ли представить себе всю эту иррациональность, всю эту беспредельность, бесконечность, представить не в отвлеченном понятии (отвлеченное понятие достаточно демонстрируется и выражается арифметическими знаками 2, 3, 5 и т.д.), но представить наглядно, картинно, фигурно, скульптурно? Для Платона (и для грека вообще) это было вопросом о возможности существования самой этой иррациональности и самой этой идеальности. Или она есть, – тогда она представима зрительно; или она не представима зрительно, – тогда ее для античного человека не существует. И вот Платон находит форму наглядного представления для иррационально данной бесконечности. Это – форма геометрическая. Оказывается, что если мы возьмем квадрат со сторонами, равными 1 футу, то диагональ этого квадрата как раз будет равняться 2 футов. Что мы тут имеем в такой диагонали? С одной стороны, она есть нечто несоизмеримое со стороной квадрата, то есть ее нельзя точно выразить никаким конечным числом арифметических знаков и действий. Это – беспредельная тьма точек на прямой, которые все же не составляют этой прямой и нисколько ее не заполняют. Но, во-вторых, оказывается, что эта беспредельность и эта иррациональность вполне видима и осязаема, даже является элементом вполне конечной и зрительно данной фигуры. Тут же, в этой же самой фигуре, в этом же самом квадрате, одна прямая имеет длину в 1 фут; и тут же, в этом же самом квадрате – прямая диагональ, имеющая длину в 2 футов. Эта замечательная особенность геометрических фигур объединять конечность и бесконечность в одном зрительном образе, объединять рациональное и иррациональное в одном скульптурном единстве вызывала у Платона (и у пифагорейцев) величайшее изумление. Платон пишет о геометрии (Epin. 990d): "Ясно, что это – наука о том, как сделать соизмеримыми на плоскости числа, по своей природе несоизмеримые; кто может соображать, для того явным стало бы, что здесь чудо не человеческое, но прямо божественное". Итак, Платон нашел для себя способ представлять иррациональное и бесконечное как зрительное, конечное как фигурное и картинное. Более подробно Платон представляет себе следующее простое геометрическое построение. Он берет сначала квадрат со стороной, равной единице, и получает в нем диагональ, равную 2. Эта диагональ несоизмерима со стороной квадрата, но если ее мыслить как сторону нового квадрата, то она будет с этой последней вполне соизмеримой, и вообще, взятая сама по себе, она ровно ничем не будет отличаться ни от каких других прямых. Построим теперь на этой диагонали квадрата прямоугольник с другой стороной, равной стороне нашего квадрата. Этот прямоугольник имеет диагональ 3 (это устанавливается путем простейшего вычисления, которого мы не будем здесь воспроизводить). Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
| ||
|