Библиотека >> История античной эстетики. Софисты. Сократ. Платон
Скачать 690.09 Кбайт История античной эстетики. Софисты. Сократ. Платон
P. VIII 546с). В "Филебе" же (25d) прямо объявляется, что справедливость и согласие порождаются равенством чисел. Равенство для Платона – всегда созвучие (Conv. 185с), а о музыке и говорить нечего (R.P. III 400b).
Таким образом, равенство, по Платону, не есть какая-то скучная уравнительность, но такое устроение жизни, которое возникает благодаря ничем не нарушаемому действию чисел, всегда и неподкупно равным самим себе и всегда функционирующим тоже в своей одинаковой закономерности. 2. Подобие Homoios – "подобный", homoiotes – "подобие". Дальнейшим развитием категорий равенства является у Платона категория подобия. Подобие уже предполагает некое соотношение. Пока это простейшее соотношение, которое сам Платон фиксирует так: "То, что испытывает одно и то же, подобно" (Parm. 148а). Это прежде всего относится ко всему идеальному, то есть ко всему идеально оформленному. Космосу Бог придал форму шара, поскольку эта форма, между прочим, "максимально подобна самой себе" (Tim. 33b). "Если земля вращается в центре неба, то ей нет надобности ни в воздухе, ни в каком ином основании, чтобы не упасть: для поддержания ее достаточно повсюдного подобия неба самому себе и равновесия земли, ибо равновесная вещь, помещенная в средине чего-нибудь подобного самому себе, никак не может отступить ни в какую сторону, но, будучи подобной сама себе, остается без уклонов" (Phaed. 109а). Таким образом, то, что идеально, устойчиво, то всегда и подобно себе, – Платон мог бы в этом случае говорить: то и тождественно с собою. "То, что всегда держится подобного себе, бессмертного и истинного,... не больше ли... существует, чем то, что никогда не держится себе подобного?.." (R.P. IX 585с). Таким образом, незатронутость хаотически-чувственным процессом делает вещи максимально подобными самим себе и максимально прекрасными. Здесь ясно и то, что самоподобие (так же, как и красота) не есть просто отвлеченно-данное идеальное. Уже самое это наименование указывает на то, что нечто подобно чему-то, то есть в самой вещи должно быть две стороны: одна, для которой приводится подобие, и другая, которая приводится для уподобления. Идеальность, то есть красота, заключается в том, что обе эти стороны в предмете вполне подобны одна другой. Вот почему прекрасен космос, обладающий вследствие этого формой шара. И вот почему прекрасны геометрические фигуры. Может быть, сюда же надо отнести и замечание в "Горгии" (508а): "Геометрическое равенство (isotes) имеет великую силу и между богами и между людьми". Благодаря принципу подобия или самоподобия прекрасны прямые и круглые фигуры. Для окружности имеется центр, к которому все точки этой окружности находятся в подобном отношении. На прямой таким центром подобных соотношений является любая точка прямой. "Прямизна, – говорит Платон (Parm. 137e), – есть то, у чего центр закрывает собою оба конца", то есть прямая линия есть такая, на которой между каждыми двумя точками мыслима третья, одинаково принадлежащая обоим отрезкам пути от нее до этих точек. Эта одинаковость, или подобие, и обусловливает собою единство направления между двумя точками, то есть прямизну. Если не обратить внимания специально на математическую точность этого определения и только выделить принцип одинаковости, подобия, то роль этого принципа здесь, как видим, первостепенная. Еще понятнее это на окружности, которая есть "то, у чего конечные точки везде равно отстоят от центра" (там же). А насколько Платон любит прямизну и округлость, это видно как из того, что он считает (Phileb. 51с) геометрические фигуры прекрасными в себе, так и из переносного употребления этих терминов. "По прямому пути бог приводит все в исполнение, хотя по природе своей он вечно обращается в круговом движении" (Legg. IV 716а). О "душах маленьких и непрямых" в "Теэтете" (173а) мы уже знаем. Там же читаем: "Рабство с молодости отнимает у них развитие, прямоту и независимость, заставляя их кривить"... О дурной душе говорится, что "от лжи и тщеславия все в ней криво и нет ничего прямого" (Gorg. 535а). Кривизна имеет, однако, положительное значение в смысле закругленности: речь Лисия в "Федре" заслуживает похвалы, между прочим, и за то, что "все в ней ясно и закруглено, что каждый оборот отчеканен со всей тщательностью" (Phaed. 234e). Наконец, что касается фигур, принцип подобия, или сходства, одинаковости, тщательно и последовательно проведен Платоном в его учении о правильных многогранниках. В основе каждого многогранника лежит определенное распределение ребер, а каждая грань составлена из одинаковых треугольников. Так, если взять куб, то каждая его грань есть квадрат, а квадрат состоит из двух прямоугольных равнобедренных треугольников, имеющих общую гипотенузу. Как мы увидим ниже, из "кубического" элемента состоит, по Платону, земля. Это подобие везде объединяется с красотой (Tim. 53с-56с). Элементы эти, кроме того, находятся в космосе каждый на своем месте, потому что, говорит Платон, сотрясаемые материей, сходные элементы сошлись в одном месте, а несходные оказались в разных местах (53а). Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
| ||
|