Библиотека >> Логико-философский трактат.

Скачать 44.24 Кбайт
Логико-философский трактат.


4.1221. Внутреннее свойство факта мы можем также назвать чертой этого факта.
(В том смысле, в каком мы, например, говорим о чертах лица.)


4.123. Свойство является внутренним, если
немыслимо, что его объект им не обладает.


(Этот голубой цвет и тот стоят ео ipso (тем самым) во внутреннем отношении
более светлого и более темного. Немыслимо, чтобы эти два объекта не стояли
в этом отношении друг к другу.)

(Здесь неопределенному употреблению слов "свойство" и "отношение"
соответствует неопределенное употребление слова "объект".)


4.124. Существование внутреннего свойства возможного положения вещей не выражается
предложением, но оно  выражает себя в  предложении, изображающем это положение
вещей, посредством внутреннего свойства данного предложения.

Приписывать предложению формальное свойство так же бессмысленно, как и отрицать
у него это формальное свойство.


4.1241. Нельзя различать формы друг от
друга, говоря, что одна форма имеет это свойство, а другая - то, так как это
предполагает, что имеется смысл в утверждении любого свойства любой из этих
форм.


4.125. Существование внутреннего отношения между возможными положениями вещей
выражается в языке внутренним отношением между предложениями, которые их изображают.


4.1251. Здесь окончательно разрешается
спорный вопрос - "являются ли все отношения внутренними или внешними".


4.1252. Ряды, упорядоченные внутренними отношениями, я называю формальными
рядами.

Числовой ряд упорядочен не внешним, а внутренним отношением.

Точно так же и ряд предложений "aRb".

"($x): aRx • xRb"

"($x, у) : aRx • xRy • yRb", и т. д.

(Если "b" стоит в одном из таких отношений к "а",
то я называю "b" следующим за "а".)


4.126. В том смысле, в каком мы говорим о формальных свойствах, мы можем теперь
говорить и о формальных понятиях.

(Я ввожу это выражение, чтобы сделать ясной причину смешения формальных понятий
с собственно понятиями, которое пронизывает всю старую логику.)

Тот факт, что нечто подводится под формальное понятие, как его объект, де может
быть выражен предложением. Но это обнаруживается в знаке самого этого объекта.
(Имя показывает, что оно обозначает объект, знак числа-что он обозначает число,
и так далее.)

Формальные понятия не могут, как собственно понятия, изображаться функцией.

Потому что их признаки, формальные свойства, не выражаются функциями.

Выражение формального свойства есть черта определенного символа.

Знак, обозначающий признак формального понятия, является, следовательно, характерной
чертой всех символов, значения которых подводятся под это понятие.

Следовательно, выражение формального понятия есть пропозициональная переменная,
в которой постоянным является только эта характерная черта.


4.127. Эта пропозициональная переменная
обозначает формальное понятие, а ее значения обозначают те объекты, которые
подходят под это понятие.


4.1271. Каждая переменная есть знак формального понятия. Потому что каждая
переменная представляет постоянную форму, которой обладают все ее значения и
которая может пониматься как формальное свойство этих значений.


4.1272. Так, переменное имя "x" есть собственно знак псевдопонятия
объект.

Там, где всегда правильно употребляется слово "объект" ("предмет",
"вещь" и т. д.), оно выражается в логической символике через переменные
имена.

Например, в предложении: "имеется два объекта, которые..." через ($x
, y)..."

Там же, где оно употребляется иначе, т. е. как собственно понятийное слово,
возникают бессмысленные псевдопредложения.

Так, например, нельзя сказать: "имеются объекты", как говорят "имеются
книги". И также нельзя говорить: "имеется 100 объектов" или "имеется
К объектов".

И вообще бессмысленно говорить о количестве всех объектов.

Это же относится и к словам "комплекс", "факт", "функция",
"число" и так далее.

Все они обозначают формальные понятия и изображаются в логической символике
переменными, а не функциями или классами (как думали Фреге и Рассел).

Такие выражения, как "1 есть число", "есть только один
нуль", и все им подобные бессмысленны.

(Говорить "есть только одна единица" так же бессмысленно, как было
бы бессмысленно сказать: 2 + 2 в 3 часа равно 4.)


4.12721. Формальное понятие уже дано с
объектом, который подводится под него.


Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28