Библиотека >> Введение в философию естественных наук.
Скачать 243.58 Кбайт Введение в философию естественных наук.
Даже в 1910 году самые лучшие английские
микроскопы, созданные на основе чисто эмпирического опыта и использующие воровским
образом некоторые идеи Аббе, имели разрешение, сравнимое или даже лучшее, чем
у цейсовских. Такая ситуация не совсем необычна. Хотя парусные корабли всегда
были частью материальной культуры, самые большие усовершенствования в их конструкции
были сделаны между 1870 и 1900 годами – в то время, когда пароход сделал их
устаревшими. Именно на это время приходится пик ремесленнической изобретательности.
Также и с микроскопами, но, конечно же, дорогие нетеоретические английские ремесленнические
микроскопы были обречены, как и парусные суда.
Однако в достижениях Аббе людей заставляло сомневаться не только коммерческое или национальное соперничество. Выше я заметил, что цитата [А] используется в книге “Микроскопы” Гейга. В девятом издании этого учебника, авторы, ссылаясь на альтернативную теорию, говорят, что микроскопическое вú дение “то же самое, что и вú дение с помощью невооруженного глаза, телескопа, и фотокамеры. Это первичное вú дение, которое признается многими в наши дни”. В 11 издании (1916 г.) соответствующее место приобрело следующий вид: “Были проведены очень убедительные эксперименты, доказывающие точность гипотезы Аббе, но как указывается многими, обычное использование микроскопа никогда не включает условия, реализованные в этих экспериментах”. Это прекрасный пример того, что Лакатош называет регрессивной исследовательской программой. Это место в основном остается тем же даже в 17 издании (1941 г.). Таким образом, учение Аббе, которое, согласно [А] утверждало, что “невозможно никакого сопоставления микроскопического и макроскопического видения”, встречало глубоко укорененное неприятие. Если придерживаться (как в случае более современного взгляда [В]) того мнения, что видимое нами – в основном дело особой обработки информации в глазу, то все остальное скорее оказывается в области оптической иллюзии или, в лучшем случае, некоторого соответствия изображения рассматриваемому объекту. В соответствии с этим описанием, системы Левенгука и Гука позволяют нам видеть. После Аббе даже обычный световой микроскоп является, в основном, Фурье-синтезатором дифракций первого или даже второго порядков. Таким образом, чтобы считать, что вы видите с помощью хорошего микроскопа, вы должны видоизменить ваше представление о видении. Прежде чем сделать вывод по данному вопросу, нам лучше исследовать некоторые более поздние приборы. Изобилие микроскопов Перейдем теперь к послевоенному периоду. Большая часть идей была известна еще в годы между мировыми войнами, но не продвинулась дальше прототипов до второй мировой войны. Одно из изобретений намного старше, но некоторое время оно не имело правильного использования. Первая практическая проблема для цитолога – это то, что большая часть живой ткани не видна из-за своей прозрачности. Чтобы что-либо увидеть, нужно окрасить объект. Большинство анилиновых красителей – страшные яды, так что видимое вами – обычно совершенно мертвая клетка, которая скорее всего претерпела структурные искажения и демонстрирует структуры, являющиеся артефактами препарирования. Тем не менее, оказывается, что живые ткани отличаются по своим поляризационным свойствам. Поместим в наш микроскоп поляризатор и анализатор. Поляризатор будет передавать к предмету только поляризационный свет с определенными свойствами. В простейшем случае, поместим анализатор под прямым углом к поляризатору, так что он будет передавать только поляризованный свет, противоположный свету поляризатора. Результатом будет полнейшая темнота. Предположим теперь, что сам предмет создает поляризацию, тогда он может изменять плоскость поляризации падающего света, так что видимый образ может порождаться анализатором. Таким способом, можно наблюдать прозрачные волокна полосатой мышцы без подкрашивания, основываясь лишь на определенных свойствах света, который мы обычно “видим”. Теория дифракции Аббе, дополненная поляризационным микроскопом, приводит к некоторой концептуальной революции. Мы не нуждаемся в “обычной” физике зрения для того, чтобы воспринимать структуры в живой ткани. На самом деле, мы редко ее используем. Даже в обычном случае мы скорее синтезируем рассеянные дифракцией лучи, чем видим предмет с помощью “обычной” зрительной физики. Поляризационный микроскоп напоминает нам, что у света существуют множество свойств помимо преломления, поглощения и дифракции. Мы можем использовать любое свойство света, взаимодействующего с предметом, для того, чтобы исследовать структуру предмета. На самом деле, можно использовать любое свойство любого волнового явления. Даже если мы ограничимся световым микроскопом, нас ждет большое количество работы. Ультрафиолетовый микроскоп удваивает разрешающую силу, хотя его важнейшее преимущество связано с ультрафиолетовым поглощением, типичным для многих биологически важных веществ. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
| ||
|