Библиотека >> Введение в философию естественных наук.
Скачать 243.58 Кбайт Введение в философию естественных наук.
В этом году Дж. Н. Бренстед в Норвегии и Т. М. Лоури в Британии
дали новое определение “кислоты”, а Г.Н. Льюис в США дал еще одно определение.
В настоящее время существует два естественных типа: кислоты Бренстеда-Лоури
и кислоты Льюиса. Естественно, что оба эти “типа” включают в себя все стандартные
кислоты, но некоторые вещества являются кислотами только одного из этих типов.
Кислота Бренстеда-Лоури относится к веществам, которые имеют тенденцию терять протон (в то время, как щелочи имеют тенденцию приобретать его). Кислота Льюиса относится к веществам, которые могут принимать электронную пару от щелочи, образуя химическую связь, состоящую из поделенной электронной пары. Два определения согласуются по отношению к щелочам, но не по отношению к кислотам, поскольку типичные кислоты Льюиса не содержат протонов, что является необходимым условием для кислоты по Бренстеду-Лоури. Насколько я понимаю, большинство химиков в большинстве случаев предпочитают определение Бренстеда-Лоури, поскольку оно предлагает наиболее удовлетворительное объяснение многих черт кислотности. С другой стороны, для некоторых целей используется определение Льюиса, которое исходно мотивировалось аналогиями с некоторыми характеристиками поведения кислот.* Один авторитетный источник пишет так: “По поводу определений кислоты и щелочи, принадлежащих Бренстеду-Лоури и Льюису, велась длительная полемика. Различие относилось преимущественно к номенклатуре названий и имело малое научное значение”. С точки зрения философии имени все же необходимо выяснить, имел ли Лавуазье в виду кислоты Бренстеда-Лоури или кислоты Льюиса, когда он говорил о кислотах. Очевидно, что он не имел в виду ни того, ни другого. Должны ли мы в наше время подразумевать то или другое вещество? Только для определенных специальных целей, а вообще говоря – нет. Я думаю, что этот пример – в некотором роде в духе патнэмовского подхода к значению. Однако, если воспринимать его буквально, то возникает определенная проблема. Значение слова “кислота” в 1920 году (то есть до 1923 года) должно иметь заполненное “экстенсиональное многоточие”. Кем: Бренстедом и Лоури? Или Льюисом? Поскольку обе школы химии частично расширяют теорию кислот, мы можем попытаться определить значение термина кислота так: “это все вещества, которые в 1920 году, то есть до расширения этого множества, считались кислотами.” Но такое определение почти наверняка не соответствует естественному типу! Мы могли бы попробовать найти пересечение этих двух определений, но я сомневаюсь, что и это является естественным типом. Этот пример напоминает нам, что понятие значения плохо приспособлено к философии науки. Мы должны заботиться о типах кислот, а не о типах значений. Теплород: несуществующий объект О флогистоне говорят, когда хотят привести пример несуществующего естественного типа. Теплород более интересен. Когда Лавуазье опроверг теорию флогистона, ему было необходимо некое объяснение тепла, которое было дано теорией теплорода. Так же, как и в случае с “электроном”, мы в точности знаем, когда некое вещество было названо теплородом. Это случилось необычным образом. В 1785 году существовала французская комиссия по химическим названиям. Многие вещества получили название в те времена. Одно из новых названий было calorique, точный термин, который должен был заменить один из смыслов старого слова chaleur (тепло). О теплороде полагали, что у него нет массы и что он и есть то вещество, которое мы называем теплом. Не все принимали официальное французское определение. Британские авторы язвительно писали о том, “что французы упорно используют термин калорифика (calorific), хотя существует прекрасное английское слово, а именно огонь”. Есть тенденция считать вещества, подобные теплороду, простыми глупостями. Это, конечно, ошибка. Как я заметил в пятой главе, теплород играл большую роль (в отличие от огня) в последнем томе “Небесной механики” Лапласа. Лаплас был большим ньютонианцем, а в своей “Оптике” Ньютон рассуждал о том, что тонкая структура вселенной состоит из частиц, имеющих силы притяжения и отталкивания, причем уменьшение действия этих сил обратно пропорционально квадрату расстояния. Лаплас постулировал различные зависимости убывания сил как для притяжения, так и для отталкивания между теплородом и другими частицами. Исходя из этого, он смог решить одну из самых важных задач своего столетия. Ньютоновская физика в это время давала неудобоваримое объяснение величины скорости звука в воздухе. Исходя из своей гипотезы теплорода, Лаплас получил вполне разумное число, которое было близко к экспериментальным результатам того времени. Лаплас был по праву горд своим достижением. Хотя еще до того, как он опубликовал свой результат, Румфорд убеждал некоторых людей в том, что такой вещи, как теплород, не существует. Теплород может быть и не представляет проблемы для патнэмовской концепции “значения”. Это редкий случай, когда мы можем заполнить экстенсиональное многоточие. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
| ||
|