Библиотека >> Введение в философию естественных наук.

Скачать 243.58 Кбайт
Введение в философию естественных наук.

В чем различие?

Существует бесконечное количество способов, которыми можно делать инструменты, основывающиеся на причинных свойствах электронов, для того, чтобы произвести желаемый эффект непревзойденной точности. Сейчас я постараюсь проиллюстрировать этот факт. Аргумент, который может быть назван экспериментальным аргументом в пользу реализма, состоит не в том, что мы выводим реальность электрона из нашего успеха. Дело обстоит не так, что мы сначала делаем инструменты, затем выводим реальность электронов, как в том случае, когда мы проверяем гипотезу и начинаем в нее верить, потому что она прошла тест. По отношению к объектам такой временной порядок не проходит. Здесь дело обстоит так: к настоящему времени мы разработали прибор, который основывается на скромном наборе банальных истин относительно электронов, для того чтобы произвести несколько других явлений, которые мы желаем исследовать.

Это может навести на мысль, что мы верим в электроны, поскольку можем предсказать поведение нашего прибора, но это так же далеко от действительности. У нас есть ряд общих идей, скажем, о том, как подготовить поляризованные электроны. Мы тратим много времени на построение прототипов приборов, которые не работают. Мы избавляемся от неимоверного количества ошибок. Часто нам необходимо сдаться и попробовать другой подход. Отладка – это не дело теоретического объяснения или предсказания того, в чем ошибка. Частично она сводится к тому, чтобы избавиться от “шума” в приборе. Хотя слово “шум” также имеет точное значение, оно часто означает все те события, которые не укладываются ни в одну теорию. Инструмент должен быть способен физически выделять свойства объектов, которые мы хотим использовать и подавлять все остальные эффекты, которые могут нам помешать. Мы полностью убеждены в реальности электронов, когда мы регулярно пытаемся построить – и довольно часто с успехом строим – новые виды приборов, которые используют разнообразные, плохо понятные причинные свойства электронов для проникновения в другие, более гипотетические части природы.

Это невозможно понять без примера. Знакомые исторические примеры часто обрастают ложными философиями истории науки, ориентированными на теорию. Так что я возьму новый пример, относящийся к поляризующей электронной пушке с акронимом PEGGY II. В 1978 году она использовалась в фундаментальном эксперименте, который привлек внимание даже газеты “Нью-Йорк Таймс”. В следующем разделе я опишу суть изготовления PEGGY II. Для этого мне понадобится немного рассказать о некоторой области новейшей физики, описание которой можно пропустить и читать лишь следующий далее инженерный раздел.

И все же для читателя может представить интерес довольно легкое для понимания значение основных экспериментальных результатов, а именно (1) четность поляризованных электронов при рассеянии на дейтерии не сохраняется; и (2) более общий факт, согласно которому четность нарушается в слабых взаимодействиях нейтральных токов.

Нарушение четности и слабые нейтральные токи

В природе существуют четыре основных типа сил, про которые нельзя сказать, что они совершенно различные. Сила тяжести и электромагнитные силы известны всем. Существуют еще сильные и слабые силы, которые воплощают исследовательскую программу Ньютона, изложенную им в “Оптике”. Ньютон утверждал, что вся природа должна пониматься в смысле взаимодействия частиц с различными силами притяжения или отталкивания, действующими на разных расстояниях (то есть с различными скоростями убывания их величин с отдалением).

Сильные взаимодействия в 100 раз сильнее, чем электромагнитные, но действуют на чрезвычайно малых расстояниях, не превышающих диаметр протона. Сильные силы действуют на “адроны”, которые включают в себя протоны, нейтроны и некоторые недавно открытые частицы, но не на электроны и другие частицы из класса, называемого “лептонами”.

Слабые взаимодействия в 10000 раз слабее электромагнитных сил и действуют на расстояниях в 100 раз меньших, чем расстояния, характерные для сильных взаимодействий, но зато они действуют как на адроны, так и на лептоны. Самым известным примером слабых взаимодействий служит b -радиоактивность.

Теорией, благодаря которой были получены такие выводы, была квантовая электродинамика. Эта теория чрезвычайно успешна и дает предсказания с точностью до одной миллионной, что является чудом современной физики.* Она применима на расстояниях от диаметра Земли до 1/100 диаметра протона. Эта теория предполагает, что носителями всех сил служат некоторого рода частицы. Носителями электромагнитных взаимодействий служат фотоны. Есть гипотеза, что носителями гравитационной силы являются “гравитоны”. В случае со взаимодействиями, включающими слабые силы, существуют заряженные токи. Постулируется, что носителями этих слабых сил являются частицы, которые называются бозонами.


Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132