Библиотека >> Новый рационализм

Скачать 258.28 Кбайт
Новый рационализм

И кроме того, микрофизика принимает, в качестве частного случая, евклидово толкование явлений только в виде упрощающей картины. В этом упрощенном образе она ясно видит искажения, неполноту, функциональную бедность. Психологически современный физик отдает себе отчет в том, что рациональные привычки, сформировавшиеся на основе нашего повседневного опыта и практической деятельности, по существу чреваты застойностью, которую и необходимо преодолеть, чтобы снова вернуться к движению духа, способного делать открытия.

Если вообще стоит придавать соображениям удобства какое-то значение, то следовало бы сказать, что часто наиболее удобной, наиболее экономной и наиболее ясной для интерпретации экспериментальных данных в области микрофизики является риманова геометрия. При этом речь не идет, разумеется, о двух языках или двух образах и еще меньше — о двух видах пространственной реальности; речь идет о двух планах абстрактного мышления, двух различных системах рациональности, двух методах исследования. Путеводной нитью теоретической мысли является отныне группа. Вокруг некоторой математической группы можно всегда организовать экспериментирование. Именно этот факт дает представление о реализаторской ценности математической идеи. Старая диалектика евклидова и неевклидова подходов перемещается в более глубокую область физического опыта. Вся проблематика научного познания реального задается выбором некоей начальной математической структуры. Если хорошо понято (как это следует, например, из работ Гонсета19), что экспериментирование находится под воздействием некоей предварительной мыслительной конструкции, то именно в абстракции ищут доводы в пользу связности конкретного. Список возможностей опыта определяется аксиоматиками.

Таким образом, к психоматематической культуре приходят, воскрешая в памяти рождение неевклидовой геометрии, которая была первым случаем диверсификации аксиоматик.

ГЛАВА 2
Неньютонова механика
I
В книге, написанной несколько лет назад, мы уже пытались выявить существенно новаторский характер релятивистских теорий. В основном мы подчеркивали в ней индуктивную ценность новых разделов математики, показав, в частности, что тензорное исчисление является подлинным методом открытия. В настоящей главе, не прибегая к математическому аппарату, мы ограничимся общей сравнительной характеристикой систем научного мышления Ньютона, с одной стороны, и Эйнштейна — с другой.

Эйнштейновская система внесла коренные изменения в область традиционных астрономических представлений. Хотя сразу же нужно заметить, что релятивистская астрономия отнюдь не связана генетически с ньютоновской. Система Ньютона была завершенной системой. Внося мелкие поправки в закон тяготения, совершенствуя теорию возмущений, она имела многочисленные средства для того, чтобы объяснить небольшое смещение перигелия Меркурия так же, как и другие аномалии. С этой точки зрения не было необходимости потрясать до оснований теоретическую мысль, дабы приспособить ее к данным наблюдения. Мы жили в ньютоновском мире, как в просторном и светлом доме. Ньютоновское мышление с самого начала представляло собой великолепный и тонкий образец замкнутой мысли, выйти из него можно было только его взорвав.

Уже в плане простых вычислений, на наш взгляд, ошибаются те, кто видит в ньютоновской системе первое приближение к эйнштейновской, поскольку релятивистские поправки никоим образом не вытекают из более точного применения ньютоновских принципов. Поэтому было бы неверным считать, что ньютоновский мир предвосхищает в своих главных чертах эйнштейновский. Только постфактум, когда целиком вошли в релятивистское мышление, можно обнаружить вновь в астрономических расчетах теории относительности — посредством известного насилия и игнорирования определенных моментов — численные результаты, получаемые средствами ньютоновской астрономии. По сути же, между системами Ньютона и Эйнштейна никакого перехода нет. Даже умножив число данных, удвоив точность измерений и слегка изменив принципы, нельзя перейти от одной системы к другой. Для этого, напротив, необходимо полное обновление. Здесь следуют индукции, выводящей за границы, а не той, которая их расширяет, когда переходят от классического мышления к релятивистскому. Разумеется, когда такая индукция осуществлена, можно посредством редукции вновь получить ньютоновскую науку. Астрономия Ньютона, в конечном счете, такой же частный случай Панастрономии Эйнштейна, как геометрия Евклида — частный случай Пангеометрии Лобачевского.

II
Однако известно, что развитие теории относительности начиналось не с астрономии и астрономических выкладок. Она появилась в результате размышлений над исходными понятиями, с того, что поставила под сомнение очевидные идеи, функционально раздвоила простые понятия. В самом деле, разве не является, например, очевидной и простой идея одновременности? Вагоны поезда идут одновременно и по параллельным рельсам.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142