Библиотека >> Новый рационализм

Скачать 258.28 Кбайт
Новый рационализм

Кстати, весьма интересна констатация самого Буля, что соотношение неопределенностей, сформулированное Гейзенбергом, нашло весьма полезную иллюстрацию в булевском представлении движения. Действительно, можно связать суть принципа Гейзенберга с тонкими геометрическими представлениями Буля, к которым он не добавляет никаких динамических условий. Однако между тангенциальным и точечным представлениями существует определенная противоположность. В булевской интерпретации «лучей» на уровне бесконечно тонкой структуры точное понятие касательной в конкретной точке не имеет смысла. К точно определенной точке нельзя провести касательную. И, напротив, если мы задаем совершенно определенное направление касательной, то не сможем определить точки касания. И это понятно, поскольку — в порядке шутки — можно было бы сказать, что касательная при этом приходит в волнение, а пространство становится зернистым. Оба безумства соотносительны. Существует противоречие между пунктуальной точностью и точностью прямоты.

Таким образом, ценность траектории Буля возрастает в свете схемы дополнительности. Выше мы сказали, что последняя освобождается от того, чего было многовато в первоначальном представлении о траектории, — и вот взамен она нам приносит соотношение Гейзенберга. Во всех точках совершается сложный поиск в соответствии с принципом неопределенности, которым характеризуется поведение частицы. В работах Адольфа Буля осуществляется подлинная рационализация принципа Гейзенберга.

Какую поистине удивительную философскую судьбу претерпел принцип Гейзенберга! За его эволюцией можно следить с самых разных метафизических позиций. В своем первоначальном виде он предстает, по существу, как позитивистский, как осторожное возвращение к физической науке, которая все данные выражала в терминах опыта. Вскоре, однако, успех приводит к его обобщению и применению в области все более многочисленных пар переменных. Наконец, он становится не только всеобщим законом, но и правилом. В нашей книге «Опыт восприятия пространства в современной физике» мы показали, что принцип Гейзенберга сделался специфической аксиомой микрофизики. Научный дух второй степени приближения может рассматривать принцип неопределенности в качестве настоящей категории, нужной для понимания микрофизики, приобретенной, вне всяких сомнений, в итоге долгих усилий, в ходе смелого и решительного преобразования духа. И вот работающие математические представления оказываются неожиданным проблеском того же принципа!

Рационализация развивается самыми различными и косвенными путями. При этом излишне, я думаю, подчеркивать, насколько, следуя обобщенному таким образом принципу неопределенности, мы далеки от того, чтобы прийти к выводу об иррациональности опытных данных. Хотя есть еще философы, которые считают принцип неопределенности выражением, констатирующим неодолимые трудности наших измерений в субатомной области26. Это одна из наиболее странных ошибок в понимании философского развития современной науки.

В том, что касается лично меня, то я считаю, что эпистемологический профиль, относящийся к принципу неопределенности, мог бы явиться совершенно исключительным профилем; он оказался бы своеобразным негативом содержания реалистской информации, поскольку, как мы уже поняли, он не может играть никакой роли в обычном, повседневном опыте. Он развивается исключительно в рационалистской и сюррационалистской сферах. Микрофизика, развивающаяся на основе этого принципа, является по существу ноуменальной; для того, чтобы ее создать, нужно, чтобы мысли опережали эксперименты или, по меньшей мере, возвращать эксперименты в открытое мыслями поле, варьировать эксперименты, приводя в действие все постулаты мысли, используя для этого философское отрицание.

V
Разумеется, мы могли бы сослаться и на другие примеры преодоления догматизма наших первоначальных представлений. В частности, мы находим столь же важные примеры, как и те, которые мы представили, во многих воспоминаниях Жоржа Булигана. Но мы выбрали пример из работ Буля, поскольку он позволяет прийти к выводам физического порядка, что отвечает целям настоящего исследования, посвященного познанию физики. Если мы хотим развить идеи философского отрицания в соответствии с сегодняшним прогрессом математической мысли, нам нужно скорректировать и диалектизировать последовательно все элементы восприятия. Легко показать, что обычное восприятие характеризуется своего рода дефицитом воображения, тяготением к унифицированным принципам и безвольным, равнодушным следованием закону достаточного основания. Хотелось бы вспомнить поэтому, в связи с темой раскрепощения восприятия, прекрасную книгу Ф. Гонсета, о которой мы уже имели случай упоминать. Его учение об «идонеизме» предлагает соответствующую перестройку математических представлений и понятий. Эта доктрина позволяет лучше, чем какая-либо из прежних теорий, судить о действительном богатстве и прогрессе математической мысли27.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142