Библиотека >> История новоевропейской философии в ее связи с наукой

Скачать 344.21 Кбайт
История новоевропейской философии в ее связи с наукой

На этом принципе стоит как математика греков, так и их физика: ни та, ни другая не имеют дела с актуальными бесконечностями - будь то бесконечно большие величины или же бесконечно малые. Приведенный Сагредо пример с муравьями - лишь специальная формулировка той самой аксиомы непрерывности Архимеда или аксиомы Евдокса, которая устанавливает, какого рода величины могут находиться между собой в отношении и что это значит - находиться в отношении.

Именно эту аксиому хочет оспорить Галилей. Вот что отвечает Сальвиати -Галилей задумавшемуся Сагредо: "В противном случае - что же? Раз мы уже дошли до парадоксов, то попробуем, нельзя ли каким-либо образом доказать, что в некоторой конечной непрерывной величине может существовать бесконечное множество пустот". Как видим, Галилей хочет доказать, что конечная величина может представлять собой сумму бесконечного числа - нельзя сказать, что величин, скажем пока - элементов, в данном случае - "пустот". В доказательство своего парадоксального утверждения Галилей обращается к знаменитому "колесу Аристотеля" - задаче, которой много занимались средневековые ученые и суть которой сформулирована в работе псевдо-Аристотеля "Механические проблемы". В средневековой механике эта задача формулируется в виде вопроса, почему при совместном качении двух концентрических кругов больший проходит такое же расстояние, как и меньший, в то время как при независимом движении этих двух кругов пройденные ими расстояния относились бы как их радиусы. Галилей решает парадокс "аристотелева колеса" совсем не так, как это делал автор "Механических проблем".

Чтобы решить задачу о качении концентрических кругов, Галилей начинает с допущения, которое ему позволяет сделать затем "предельный переход", играющий принципиально важную роль в его доказательстве: он рассматривает сначала качение равносторонних и равноугольных концентрических многоугольников. При качении большего многоугольника должен двигаться также и вписанный в него меньший; при этом, как доказывает Галилей, меньший многоугольник пройдет пространство, почти равное пройденному большим, "если включить в пространство, пройденное меньшим, также и интервалы под дугами, не затронутые на самом деле никакой частью периметра меньшего многоугольника". При качении меньшего многоугольника, как показывает Галилей, происходят "скачки", как бы "пустые промежутки", число которых будет равно числу сторон обоих многоугольников. При возрастании числа сторон многоугольников размеры пустых промежутков уменьшаются пропорционально увеличению числа сторон. Однако пока многоугольник остается самим собой, то, как бы ни возрастало число его сторон, они остаются все же конечной величиной, а потому и число пустых промежутков будет как угодно большим, но конечным числом.

Но если мы рассмотрим случай предельного перехода, когда многоугольник превращается в круг, то дело существенно меняется. "...Как в многоугольнике со ста тысячами сторон путь, пройденный при обороте, измеряется обводом большего многоугольника, то есть отложением без перерыва всех его сторон, в то время как путь меньшего многоугольника также равен ста тысячам его сторон с прибавлением такого же числа, то есть ста тысяч пустых промежутков, так и в кругах (представляющих собою многоугольники с бесконечно большим числом сторон) линия, образуемая непрерывным наложением бесконечно большого числа сторон большого круга, приблизительно равна по длине линии, образованной наложением бесконечно большого числа сторон меньшего круга, если включить в нее и промежутки; а так как число сторон не ограниченно, а бесконечно, то и число промежутков между ними также бесконечно; бесчисленные точки в одном случае заняты все, в другом случае часть их занята, а часть пуста".

Здесь Галилей делает одно допущение, на котором уже и держится все последующее его доказательство, а именно что круг представляет собой многоугольник с бесконечно большим числом сторон. Такое допущение не принималось математиками ни в античности, ни в средние века, оно дозволялось только в логистике для упрощения расчетов, которые всегда принимались как приблизительные. Допущение предельного перехода многоугольника с как угодно большим, но конечным числом сторон в фигуру другого рода - круг - позволяет Галилею ввести в оборот понятие актуальной бесконечности, вместе с которым в научное построение проникают парадоксы - и на этих-то парадоксах, которые прежде в математику пытались не впускать, как раз и работает та новая ветвь математики, которая во времена Галилея носит название "математики неделимых", а впоследствии получает название исчисления бесконечно малых. В "Беседах" Галилея мы наглядно можем видеть, как формируется методологический базис этой новой математики, возникшей вместе с механикой нового времени как ее математический фундамент.

Весь парадокс теперь сосредоточивается в понятии "пустых точек", которые представляют собой промежутки, лишенные величины. Введение этих "пустых точек" служит для Галилея средством преодоления противоположности непрерывного и дискретного - противоположности, которую считал принципиальной для науки Аристотель и на которой базируется его физика и философия в той же мере, в какой и математика Евклида.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198