Библиотека >> История новоевропейской философии в ее связи с наукой

Скачать 344.21 Кбайт
История новоевропейской философии в ее связи с наукой

Платон потому и поставил геометрию после арифметики, что считал геометрию менее строгой в силу ее обращения к пространственным образам, а не к одним только понятиям ума. Лейбниц, хорошо знакомый с сочинениями Платона и Прокла, разделяет их точку зрения, что пространственные образы - это смутные, неадекватные идеи, и тот, кто с их помощью стремится дать определение исходных понятий геометрии, не может этого сделать с надлежащей строгостью. "Вот почему Евклид за отсутствием отчетливо выраженной идеи, т.е. определения прямой линии (так как его провизорное определение прямой неясно и он им не пользуется в своих доказательствах), был вынужден обратиться к двум аксиомам, которые заменяли у него определение и которыми он пользовался в своих доказательствах. Первая аксиома гласит, что две прямые не имеют общей части, а вторая - что они не заключают пространства. Архимед дал своего рода определение прямой линии, сказав, что это кратчайшая линия между двумя точками. Но, пользуясь в своих доказательствах такими элементами, как евклидовы, которые основаны на только что упомянутых мной двух аксиомах, он молча предполагает, что свойства, указанные в этих аксиомах, принадлежат определенной им линии".

Но если основания античной геометрии были столь непрочны, то как же следует отнестись к построенному на них зданию? Что это - строгая научная система, какой считали геометрию и в античности, и в средние века, и уж тем более в XVII столетии, или же это просто практическое искусство, способ решения технико-практических задач, каким с древности считали логистику? В самом деле, если очевидность евклидовых аксиом носит не чисто логический характер, а опирается и на воображение (что несомненно), то "Начала" невозможно считать строго научной системой.

Однако Лейбниц столь радикального вывода не делает. Он заявляет, что все же "лучше было ограничиться небольшим количеством истин этого рода, казавшихся ему (Евклиду. - П.Г.) наипростейшими, и вывести из них другие истины... чем оставить множество их недоказанными и, что еще хуже, предоставить людям свободу допускать все, что угодно, в зависимости от настроения". Ибо даже при помощи таких, далеко не первичных аксиом были сделаны великие открытия, которых не было бы, "если бы древние не захотели двинуться вперед до того, как они не докажут аксиом, которыми они вынуждены были пользоваться".

Но в таком случае возникает другой вопрос: если без предлагаемого Лейбницем анализа возможно создание столь логически стройной и все-таки весьма достоверной науки, как античная геометрия, то так ли уж необходим этот анализ? На эту неувязку в рассуждениях Лейбница обратил внимание В. Каринский в своей работе "Умозрительное знание в философской системе Лейбница". "Может быть, - пишет Каринский, - в этом слишком энергическом выражении мысли о совершенной достоверности геометрии в различии от метафизики, несмотря на то, что аксиомы для общего создания оставались без аналитического доказательства, можно видеть ослабление основного критического значения, приписываемого Лейбницем своей теории анализа".

В. Каринский прав: складывается такое впечатление, что Лейбниц принимает, помимо высшего рода достоверности, который может быть обеспечен лишь анализом понятий, также и некоторый как бы промежуточный род и к нему как раз относит аксиомы Евклида.

Древние философы, рассуждает Лейбниц, так же как и математики, именно в Греции начали требовать строгости доказательства, стремясь таким образом найти первичные аксиомы, и, хотя до конца выполнить это требование в математике им и не удалось, все же достигнутое ими намного превзошло то, что было сделано до них. Греческие математики не считали возможным принимать за науку то, что дает чувственное представление. Этим, по Лейбницу, "могут довольствоваться только люди, имеющие в виду практическую геометрию как таковую, но не те, кто желает иметь науку, которая сама служила бы усовершенствованию практики. Если бы древние придерживались этого взгляда и не проявили строгости в этом пункте, то, думаю, они не пошли бы далеко вперед и оставили бы нам в наследство лишь такую эмпирическую геометрию, какой была, по-видимому, египетская геометрия и какой является, кажется, китайская геометрия еще и теперь. В этом случае мы оказались бы лишенными прекраснейших открытий в области физики и механики, которые мы сделали благодаря нашей геометрии и которые неизвестны там, где последней нет".

Как видим, Лейбниц, так же как и его предшественники Кеплер, Коперник, Галилей и Декарт, видит прямую преемственность между механикой нового времени и античной математикой. Их суждения мы должны принимать во внимание, размышляя о том, возникла ли в результате научной революции XVII столетия абсолютно новая, не имеющая ничего общего с античной и средневековой, форма знания или же между новой и старой наукой была существенная содержательная связь.

Вернемся, однако, к обоснованию математики. Непоследовательность в рассуждениях Лейбница об основаниях математики отнюдь не случайна.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198