Библиотека >> История новоевропейской философии в ее связи с наукой

Скачать 344.21 Кбайт
История новоевропейской философии в ее связи с наукой

При последующем обсуждении оказывается, что вторую причину нет надобности и допускать, поскольку для объяснения сцепления тел вполне достаточно первой причины. "...Так как каждое действие должно иметь только одну истинную и ясную причину, я же не нахожу другого связующего средства, то не удовлетвориться ли нам одной действующей причиной - пустотою, признав ее достаточность?"

Обсуждение природы пустоты и возможности ее присутствия в телах в виде своего рода пор ("мельчайших пустот") приводит Галилея к той проблеме, которая на протяжении средних веков, как правило, была связана с гипотезой о существовании пустоты, а именно к проблеме непрерывности. Ведь допущение пустот в виде мельчайших промежутков между частями тела требует обсудить вопрос о том, что такое само тело: есть ли оно нечто непрерывное или же состоит из мельчайших "неделимых" и каково, далее, число этих последних - конечное или бесконечное?

Вопросы эти широко дискутировались в XIII и особенно в XIV в., и в этом смысле Галилей еще не выходит за рамки средневековой науки в своей постановке этих вопросов. Но вот в решении их Галилей выступает отнюдь не как средневековый ученый. Он допускает существование "мельчайших пустот" в телах, которые и оказываются источником силы сцепления в них. Обратим внимание на интересное отличие Галилея от античных атомистов: у последних пустоты, поры в телах выступали как причина их разрушаемости, почему и надо было Демокриту предположить, что неразделимость атома обусловлена отсутствием в нем пустоты, которая разделяла бы его на части. У Галилея же, напротив, пустота выступает как сила сцепления. О силе пустоты Галилей вслед за средневековыми физиками рассуждает в понятиях Аристотеля, а не атомистов: по Аристотелю, природа "боится пустоты", чем Аристотель и объясняет целый ряд физических явлений, в том числе движение жидкости в сообщающихся сосудах и т.д. К таким же объяснениям прибегали некоторые средневековые физики. Их принимает и Галилей, когда пишет: "Если мы возьмем цилиндр воды и обнаружим в нем сопротивление его частиц разделению, то оно не может происходить от иной причины, кроме стремления не допустить образования пустоты".

Возможность наличия мельчайших пустот в телах Галилей доказывает сначала с помощью физического аргумента, а затем в подкрепление его обращается к аргументу философскому, а именно к вопросу о структуре континуума. К этому переходу побуждает Галилея естественный вопрос: как можно объяснить огромную силу сопротивления некоторых материалов разрыву или деформации с помощью ссылок на "мельчайшие пустоты"? Ведь, будучи мельчайшими, эти пустоты, надо полагать, дают и ничтожную величину сопротивления. Чтобы разрешить возникшее затруднение, Галилей прибегает к допущению, сыгравшему кардинальную роль в становлении науки нового времени. Он заявляет, что "хотя эти пустоты имеют ничтожную величину (заметим, что величину, хоть и ничтожную, они все же имеют. - П.Г.) и, следовательно, сопротивление каждой из них легко превозмогаемо, но неисчерпаемость их количества неисчислимо увеличивает сопротивляемость". Неисчислимость количества ничтожно малых пустот - это в сущности бесконечное множество бесконечно малых, можно сказать, пустот, а можно сказать, сил сопротивления. Потом окажется, что этот метод суммирования бесконечно большого числа бесконечно малых - неважно чего: моментов времени, частей пространства, моментов движения и т.д. - является универсальным и необычайно плодотворным инструментом мышления.

Чтобы понять, какую революционизирующую роль сыграл этот предложенный Галилеем метод суммирования, сравним между собой античное и средневековое понимание суммирования частей - пусть даже очень малых, но конечных - с предложенным Галилеем способом суммирования бесконечно малых "частей". В "Беседах" прежний метод излагает Сагредо, собеседник Сальвиати: "...если сопротивление не бесконечно велико, то оно может быть преодолено множеством весьма малых сил, так что большое количество муравьев могло бы вытащить на землю судно, нагруженное зерном: в самом деле, мы ежедневно наблюдаем, как муравей тащит зерно, а так как зерен в судне не бесконечное множество, но некоторое ограниченное число, то, увеличив это число даже в четыре или в шесть раз, мы все же найдем, что соответственно большое количество муравьев, принявшись за работу, может вытащить на землю и зерно, и корабль. Конечно, для того, чтобы это было возможно, необходимо, чтобы и число их было велико; мне кажется, что именно так обстоит дело и с пустотами, держащими связанными частицы металла.

Сальвиати. Но если бы понадобилось, чтобы число их было бесконечным, то сочли бы вы это невозможным?

Сагредо. Нет, не счел бы, если бы масса металла была бесконечной; в противном случае...".

Ясно, что хотел сказать Сагредо: в противном случае мы окажемся перед парадоксом, восходящим еще к Зенону: как бы малы ни были составляющие элементы, но если они имеют конечную величину, то бесконечное их число в сумме даст и бесконечную же величину - неважно, идет ли речь о массе металла, длине линии или величине скорости.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198