Библиотека >> О синтаксической связности
Скачать 18.87 Кбайт О синтаксической связности
Конечно,
предложения не являются функторами, а поэтому категория значения, куда входят предложения, принадлежит к основным категориям. Кроме категорий предложений могут быть также иные основные категории. У Лесьневского наряду с категорией предложений выступает только одна единственная основная категория, а именно, категория имен, причем к ней принадлежат как единичные имена, так и общие. Если позволительным будет сравнивать упрощенную теорию типов с теорией категорий значения, то нужно было бы в теории типов тип предложений и тип собственных имен отнести к основным категориям. Оставшиеся типы принадлежали бы к категории функторов. Кажется, что в обычном языке не все имена образуют одну единственную категорию значений. По нашему мнению, в обычном языке можно среди имен выделить как минимум две категории значения, а именно, категорию значения, к которой принадлежат единичные имена индивидов, а также общие имена индивидов, поскольку они взяты in suppositione personali, и во-вторых, категорию значения общих имен, поскольку они выступают in suppositione simplici (т.е. как названия универсалий). Если стремиться выразить понятие синтаксической связности во всей полноте, то следовало бы ничего не предрешать о числе и виде основных категорий значения и категорий функторов, поскольку они могут быть различными в разных языках. Однако для простоты мы ограничимся такими языками, в которых (как и у Лесьневского) выступают только две основные категории значения, а именно - категории предложений и имен. Кроме этих двух основных категорий значения примем вслед за Лесьневским в принципе неограниченную вверх и разветвленную иерархию функторных категорий, которые характеризу ются двояко: во-первых, числом и категорией значения аргументов, а также их последовательностью, во-вторых, категорией значения всего составного выражения, которое они образовывают совместно со своими аргументами. Таким образом, например, функторы с одним именем как аргументом, образующие предложения, представляли бы одну замкнутую категорию значения, функторы, образующие предложение с двумя именами как аргументами, представляли бы иную категорию значения и т.д. Функторы, которые образовывали бы имя из одного имени как аргумента составили бы еще одну категорию значения. Можно было бы в качестве отдельной категории значения назвать функторы, образующие предложения и имеющие аргументом одно предложение (как например, знак ~ в логике) и т.д. 3. Мы принимаем, что определенная категория значения слова устанавливается посредством значения, которым обладает простое выражение. Теперь в зависимости от категории значения, к которой принадлежат простые выражения, снабдим их индексами. А именно, припишем простым выражениям, принадлежащим к категории предложений, индекс "s", тогда как простым выражениям, принадлежащим к категории имен - индекс "n". Простым выражениям, не принадлежащим к какой-либо основной категории, а к категории функторов, припишем индекс дроби, образованной из числителя и знаменателя таким образом, что в числителе окажется индекс категории значения, к которой принадлежит выражение, составленное из знака функции и его аргументов, в знаменателе - последовательно категории значения, к которым принадлежат аргументы, с которыми функтор совместно образует осмысленное целое. Так, например, выражение, которое из двух имен как аргументов образовывает предложение, получит индекс дроби s ----. nn Таким образом, каждая категория значения обладала бы характерным для себя индексом. Иерархия категорий значений выражалась бы в последовательности индексов следующего вида (далеко не полной): s s s s s s s s, n, ---, ----, ----, ... ----, ----, -----, ..., -----, n nn nnn s ss sss ns s --- s s s n n n n -- ,..., ---, -----, ..., ---, ----,-----,..., ----- и т.д. sn s s s n nn sn s ---- -- -- ---- n n n n Для иллюстрации этой символики на примере возьмем какое-либо предложение логистики, например, ~p-->p.-->.p. Приписывая отдельным словам их индексы, получим: ~ p ---> p. --->. | ||
|