Библиотека >> Материя и субъективность
Скачать 190.71 Кбайт Материя и субъективность
В результате каждый фотон идет сразу по обоим путям, что приводит к возникновению интерференционной картины на детекторе.
Затем на одном из путей устанавливается ячейка Поккельса, которая устроена таким образом, что когда она включена, она направляет фотон к вспомогательному детектору и это позволяет определить по какому из путей после светоделителя прошел фотон, попавший в детектор. Включение ячейки Поккельса приводит к разрушению интерференционной картины. Далее, в схему эксперимента вводится генератор случайных сигналов, который случайным образом включает или выключает ячейку Поккельса уже после того, как фотон прошел светоделитель, но до того, как он дошел до ячейки. Включение генератора в схему эксперимента не привело к изменению результата: интерференционная картина возникала или исчезала в зависимости от того, включена или выключена ячейка Поккельса. При этом, во всех экспериментах всегда срабатывал только один детектор - либо основной, либо вспомогательный. Как можно понять результат этого эксперимента? Пусть ячейка Поккельса включилась в момент, когда один из волновых пакетов, описывающих движение фотона, находится на середине пути от светоделителя до ячейки Поккельса, а второй, прошел такое же расстояние по альтернативному пути (на котором ячейка не установлена). Предположим, что в конце этого эксперимента сработал вспомогательный детектор. В таком случае куда девался волновой пакет, который до включения ячейки двигался по второму пути к основному детектору? Одно из возможных объяснений заключается в том, что фотон, уже в момент, когда он попадает в светоделитель, заранее "предвидит" будет ли включена ячейка Поккельса и в зависимости от этого либо движется по одной траектории (если ячейка включена), либо (в противном случае) движется по двум траекториям сразу - что приводит к возникновению интерференционной картины на основном детекторе. Другое объяснение заключается в том, что дойдя до ячейки, фотон, в случае если она включена, возвращается назад во времени в исходную точку (в светоделитель) и начинает движение заново по одному из альтернативных путей. В обоих случаях имеет место парадоксальное воздействие будущего на прошедшее, некий контакт "через время". Можно, конечно, предположить, что волновой пакет, движущийся по альтернативному пути, мгновенно разрушается (редуцируется) в момент срабатывания одного из детекторов. Но в этом случае нарушаются принципы теории относительности, исключающие мгновенную передачу информации из одной точки пространства в другую удаленную точку, т.е. этот процесс "редукции" также нельзя рассматривать как некий действительный физический процесс, происходящий в пространстве и времени. Другим примером временной нелокальности квантовых систем может служить так называемый "обратный ЭПР (Эйнштейна-Подольского-Розена)" эксперимент (168). Схема этого эксперимента такова: два лазера одновременно воздействуют своим излучением на одну мишень таким образом, что испускаемые ими фотоны проходят через два анализатора и возбуждают атомы вещества за счет каскадного перехода с поглощением сразу двух фотонов, испущенных первым и вторым лазером. Затем регистрируется число возбужденных атомов. Как показывают эксперименты, вероятность прохождения фотонов через два анализатора с последующим двухкаскадным возбуждением атома синусоидально зависит от разности углов между оптическими осями анализаторов. Поскольку вероятность возбуждения атома описывается той же формулой, что и вероятность излучения, это означает, что начальная волновая функция фотонов, поглощенных атомом, представляет собой некую симметризованную функцию, а не произведение независимых одночастичных волновых функций. Таким образом, фотоны как бы заранее знают, что в будущий момент времени они будут поглощены одним и тем же атомом и соответствующим образом заранее изменяют свое состояние, согласовывая его с состоянием фотонов, испущенных другим лазером. Эти удивительные результаты говорят о том, что "внутреннее" время квантового объекта (в промежутке между измерениями) радикальным образом отличается от "внешнего", чувственно регистрируемого времени, в котором осуществляются наблюдения за квантовым объектом. В частности, во "внутреннем", ненаблюдаемом бытии квантового объекта отсутствует актуальная динамика в виде необратимой смены состояний. "Последовательные" состояния каким-то образом "сосуществуют", "чувствуют" друг друга и способны влиять друг на друга как в прямом, так и в обратном временном порядке. Можно сказать, что здесь отсутствует разделение на прошлое, настоящее и будущее - существует лишь протяженное настоящее, охватывающее все, что происходит между измерениями. Одна из возможных интерпретаций этих необычных свойств "квантового времени" заключается в предположении, что ненаблюдаемые квантовые процессы, протекающие между приготовлением исходного квантового состояния и определением по результатам измерений конечного состояния, имеют фиктивный характер. Никакого реального движения даже потенций в этом интервале не происходит. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
| ||
|