Библиотека >> Материя и субъективность
Скачать 190.71 Кбайт Материя и субъективность
90)).
Уже из этих соображений вытекает перспективность "компьютерной метафоры", как средства исследования человеческого сознания. Опираясь на эту метафору, мы можем поставленную в начале раздела проблему: может ли квантовая система выполнять сложные психические функции, заменить другой, более доступной для исследования, проблемой: может ли квантовая система выполнять функцию универсального компьютера, достаточно "мощного", вместе с тем, для того, чтобы можно было надеяться на его основе создать систему искусственного интеллекта, функционально эквивалентного человеческому сознанию. Последняя проблема распадается на ряд подпроблем, из которых по крайней мере две мы можем уже сейчас содержательно обсудить. Первая - это проблема принципиальной возможности создания квантового компьютера, т.е. универсального вычислительного устройства, существенным образом использующего квантовые принципы. Эта проблема в настоящее время имеет вполне определенное, а именно - положительное решение. Как показано в ряде работ (149,150,153) квантовый компьютер, в принципе, создать возможно. (То есть, принципы квантовой механики по крайней мере не исключают такой возможности). Более того, в настоящее время квантовый компьютер уже перестал быть лишь теоретической возможностью: уже существует действующая модель квантового компьютера (169). Вместе с тем известно, что квантовые вычисления сами по себе неустойчивы (156). Если бы удалось построить вычислительную машину, целиком построенную на квантовых принципах, то она вскоре перестала бы нормально функционировать, хотя бы из-за необратимого расплывания волновых пакетов составляющих ее частиц (существенную роль здесь также играет нелинейный характер вычислительного процесса). Для осуществления устойчивых вычислений необходима гибридная система, сочетающая классические и квантовые принципы. Отсюда понятно почему необходимы подчиненные классическим законам нервные процессы. Роль "классической" подсистемы - в стабилизации, регуляции, управлении "квантовой" подсистемой нашего мозга. "Классическая" система задает для "квантовой" внешний потенциал и граничные условия - и тем самым задает характер ее функционирования. "Классическая" подсистема также осуществляет измерения над "квантовой" и именно этот измерительный процесс, как мы полагаем, создает "актуально переживаемое", т.е. "чувственность". В целом, функционально сознание - это продукт совместной деятельности "классической" и "квантовой" подсистем, хотя субъективно сознание коррелятивно только квантовым состояниям. (Конечно, проводимое здесь различие "классического" и "квантового" не является абсолютным. "Классическая" подсистема - также обладает квантовыми свойствами, но эти свойства проявляются лишь на уровне составляющих ее микроскопических частей, тогда как "квантовая" подсистема проявляет свои квантовые свойства в макромасштабе. Иными словами, "классическая" подсистема, - это некоторое усреднение по множеству индивидуальных микроскопических квантовых систем). Вторая проблема: могут ли квантовые компьютеры (вернее гибридные системы, содержащие "классические" и "квантовые" элементы) обеспечить достаточную вычислительную мощность (выражаемую, например, в количестве операций в секунду и, также, в объеме доступной памяти), которая позволила бы осуществлять такую же по сложности обработку информации, которая осуществляется в человеческом сознании. Сложность здесь в том, что мы не знаем какая именно вычислительная мощность будет здесь достаточной. Поэтому мы ограничимся лишь сравнением возможностей "классических" и квантовых компьютеров. То, что гибридные системы, сочетающие классические и квантовые принципы, будут обладать большими моделирующими возможностями, чем чисто "классические" вычислительные системы, у специалистов в области "компьютерных наук" не вызывает сомнений (15, 150). Здесь, прежде всего, нужно отметить, что существует обусловленный фундаментальными физическими принципами предел роста вычислительной мощности "классических" вычислительных устройств. Скорость осуществления логических операций и скорость поиска нужной информации в памяти лимитированы, с одной стороны, предельной скоростью распространения сигнала в вычислительном устройстве, а с другой стороны - предельными размерами этого устройства. Поскольку скорость распространения сигнала ограничена скоростью света, существует лишь один радикальный способ увеличить быстродействие компьютера - это миниатюризация его элементарной базы. Однако, если характерные размеры деталей становятся меньше 0,1 мкм, вступают в силу квантовые законы. Таким образом, сама задача повышения вычислительной мощности компьютера ведет нас к необходимости рассмотреть возможность замены "классических" принципов обработки информации - квантовыми. (Нам могут возразить, указав, что рост вычислительной мощности возможен также и за счет использования параллельных вычислений. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
| ||
|