Библиотека >> Метафизика

Скачать 187.68 Кбайт
Метафизика

Если есть какая-нибудь такая [основа, скажем] материя, то очевидно, что и сами-посебе-числа будут некоторыми соотношениями одного и другого. Я имею в виду, например, что если Каллий есть числовое соотношение огня, земли, воды и воздуха, то и идея его будет числом каких-нибудь других субстратов; и сам-по-себе-человек-все равно, есть ли он какое-нибудь число или нет, - все же будет числовым соотношением каких-то вещей, а не числом, и не будет на этом основании существовать какое-либо [само-по-себе-] число.

Далее, из многих чисел получается одно число, но как может из [многих] Эйдосов получиться один Эйдос? Если же число получается не из самих-посебе-чисел, а из [единиц], входящих в состав числа, например в состав десяти тысяч, то как обстоит дело с единицами? Если они однородны, то получится много нелепостей; и точно так же, если они неоднородны, ни сами единицы, содержащиеся в числе, друг с другом, ни все остальные между собой. В самом деле, чем они будут отличаться друг от друга, раз у них нет свойств? Все это не основательно и не согласуется с нашим мышлением. Кроме того, приходится признавать еще другой род числа, с которым имеет дело арифметика, а также все то, что некоторые называют промежуточным; так Бот, как же это промежуточное существует или из каких образуется начал? П. почему оно будет находиться между окружающими нас вещами и самими-по-себе- [числами] ?

Затем, каждая из единиц, содержащихся в двойке, должна образоваться из некоторой предшествующей двойки, хотя это невозможно.

Далее, почему составное число едино?

Далее, к сказанному следует добавить: если единицы различны, то надо было бы говорить так, как те, кто утверждает, что элементов - четыре или два: ведь каждый из них называет элементом не общее [например, тело), а огонь и землю, все равно, имеется ли нечто общее им, а именно тело, или нет. Однако же говорят о едином так, будто оно подобно огню или воде состоит из однородных частиц; а если так, то числа не могут быть сущностями; напротив, если есть что-то само-по-себе-единое и оно начало, то ясно, что о едином говорят в различных значениях: ведь иначе быть не может.

Кроме того, желая сущности свести к началам, мы утверждаем, что длины получаются из длинного и короткого как из некоторого вида малого и большого, плоскость - из широкого и узкого, а тело - из высокого и низкого. Однако как в таком случае будет плоскость содержать линию или имеющее объем - линию и плоскость? Ведь широкое и узкое относятся к другому роду, нежели высокое и низкое. Поэтому, так же как число не содержится в них, потому что многое и немногое отличны от этих [начал], так и никакое другое из высших [родов] не будет содержаться в низших. Но широкое не есть род для высокого, иначе тело было бы некоторой плоскостью. Далее, откуда получатся точки в том, в чем они находятся? Правда, Платон решительно возражал против признания точки родом, считая это геометрическим вымыслом; началом линии он часто называл "неделимые линии". Однако необходимо, чтобы [эти] линии имели какой-то предел. Поэтому на том же основании, на каком существует линия, существует и точка.

Вообще же, в то время как мудрость ищет причину видимого, мы это оставили без внимания (ведь мы ничего не говорим о причине, откуда берет начало изменение), но, полагая, что указываем сущность видимого, мы утверждаем, что существуют другие сущности; а каким образом эти последние - сущности видимого, об этом мы говорим впустую, ибо причастность (как мы и раньше сказали) не означает ничего.

Равным образом Эйдосы не имеют никакого отношения к тому, что, как мы видим, есть значимая для знаний причина, ради которой творит всякий ум и всякая природа и которую мы признаем одним из начал; математика стала для нынешних [мудрецов] философией, хотя они говорят, что математикой нужно заниматься ради другого.

Далее, можно считать, что сущность, которая [у платоников] лежит в основе как материя, - а именно большое и малое - слишком математического свойства и что она сказывается о сущности и материи и скорее составляет их видовое отличие, нежели самое материю; это подобно тому, как и размышляющие о природе говорят о разреженном и плотном, называя их первыми видовыми отличиями субстрата: ведь и здесь речь идет о некоторого рода избытке и недостатке. А что касается движения, то ясно, что если бы большое и малое были движением, Эйдосы должны были бы двигаться; если же нет, то откуда движение появилось? В таком случае было бы сведено на нет все рассмотрение природы.

Также и то, чти кажется легким делал?, - доказать, что все едино, этим способом не удается, ибо через отвлечение (ekthesis) получается не то, что все едино, а то, что есть некоторое само-по-себе-единое, если даже принять все [предпосылки]. Да и этого самого-посебе-единого не получится, если не согласиться, что общее есть род; а это в некоторых случаях невозможно.

Не дается также никакого объяснения, как существует пли может существовать то, что [у них] идет после чисел-линии, плоскости и тела, и каков их смысл: ведь они не могут быть ни Эйдосами (ибо они не числа), ни чем-то промежуточным (ибо таковы математические предметы), ни преходящими вещами; они со своей стороны оказались бы каким-то другим - четвертым родом [сущностей].

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121