Библиотека >> Метафизика

Скачать 187.68 Кбайт
Метафизика

И точно так же механика. Поэтому если, полагая что-то обособленно от привходящих свойств, рассматривают его, поскольку оно таково, то не получится никакой ошибки, как и в том случае, когда чертят на земле и объявляют длиною в одну стопу линию, которая этой длины не имеет: ведь в предпосылках здесь нет ошибки.

И лучше всего можно каждую вещь рассмотреть таким образом: полагая отдельно то, что отдельно не существует, как это делает исследователь чисел и геометр. В самом деле, человек, поскольку он человек, един и неделим, и исследователь чисел полагает его как единого неделимого и затем исследует, что свойственно человеку, поскольку он неделим. Геометр же рассматривает его не поскольку он человек и не поскольку он неделим, а поскольку он имеет объем. Ведь ясно, что то, что было бы присуще человеку, даже если бы он случайно не был неделим, может быть присуще ему и без этого Вот почему геометры говорят правильно и рассуждают о том, что на деле существует, и их предмет - существующее, ибо сущее имеет двоякий смысл - как осуществленность и как материя.

Так как благое и прекрасное не одно и то же (первое всегда в деянии, прекрасное же-и в неподвижном), то заблуждаются то, кто утверждает, что математика ничего не говорит о прекрасном или благом. На самом же деле она говорит прежде всего о нем и выявляет его. Ведь если она не называет его по имени, а выявляет его свойства (ergd) и соотношения, то это не значит, что она не говорит о нем. А важнейшие виды прекрасного - это слаженность, соразмерность и определенность, математика больше всего и выявляет именно их. И так как именно они (я имею в виду, например, слаженность и определенность) оказываются причиной многого, то ясно, что математика может некоторым образом говорить и о такого рода причине - о причине в смысле прекрасного. Яснее мы скажем об этом в другом месте .

ГЛАВА ЧЕТВЕРТАЯ

Итак, о том, что математические предметы - это сущее и в каком смысле они сущее, а также в каком смысле они первее и в каком нет,- об этом довольно сказанного. Что же касается идей, то прежде всего следует рассмотреть само учение об идеях, не связывая их с природой чисел, а так, как их с самого начала понимали те, кто впервые заявил, что есть идеи. К учению об эйдосах пришли те, кто был убежден в истинности взглядов Гераклита, согласно которым все чувственно воспринимаемое постоянно течет; так что если есть знание и разумение чего-то, то помимо чувственно воспринимаемого должны существовать другие сущности (physeis), постоянно пребывающие, ибо о текучем знания не бывает. С другой стороны, Сократ исследовал нравственные добродетели и первый пытался давать их общие определения (ведь из рассуждавших о природе только Демокрит немного касался этого и некоторым образом дал определения теплого и холодного; а пифагорейцы - раньше его - делали это для немногого, определения чего они сводили к числам, указывая, например, что такое удобный случай, или справедливость, или супружество. Между тем Сократ с полным основанием искал суть вещи, так как он стремился делать умозаключения, а начало для умозаключения - это суть вещи: ведь тогда еще не было диалектического искусства, чтобы можно было, даже не касаясь сути, рассматривать противоположности, а также познает ли одна и та же наука противоположности; и в самом деле, две вещи можно по справедливости приписывать Сократу - доказательства через наведение и общие определения: и то и другое катается начала знания). Но Сократ не считал отделенными от вещей ни общее, ни определения. Сторонники же идей отделили их и такого рода сущее назвали идеями, так что, исходя почти из одного и того же довода, они пришли к выводу, что существуют идеи всего, что сказывается как общее, и получалось примерно так как если бы кто, желая произвести подсчет, при меньшем количестве вещей полагал, что это будет ему не по силам, а увеличив их количество, уверовал, что сосчитает. В самом деле, эйдосов, можно сказать, больше, чем единичных чувственно воспринимаемых вещей, в поисках причин для которых они от вещей пришли к эйдосам, ибо для каждого [рода] есть у них нечто одноименное, и помимо сущностей имеется единое во многом для всего другого - и у окружающих нас вещей, и у вечных.

Далее, ни один из способов, какими они доказывают, что эйдосы существуют, не убедителен. В самом деле, на основании одних не получается с необходимостью умозаключения, на основании других эйдосы получаются и для того, для чего, как они полагают, их нет. Ведь по "доказательствам от знаний" эйдосы должны были бы иметься для всего, о чем имеется знание; на основании довода относительно "единого во многом" они должны были бы получаться и для отрицаний, а на основании довода, что "мыслить что-то можно и по его исчезновении",- для преходящего: ведь о нем может [остаться] некоторое представление. Далее, на основании наиболее точных доказательств одни признают идеи соотнесенного, о котором они говорят, что для него нет рода самого по себе; другие приводят довод относительно "третьего человека".

И, вообще говоря, доводы в пользу эйдосов сводят на нет то, существование чего для тех, кто признает эйдосы, важнее существования самих идей: ведь из этих доводов следует, что первое не двоица, а число, т.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121