Библиотека >> Метафизика

Скачать 187.68 Кбайт
Метафизика

Ведь если между ними нет различия, то не будут различаться между собой и пятерки, из которых состоит десятка; а так как они различаются между собой, то будут различаться между собой и единицы. Если же они различаются, то могут ли быть [в десятке] другие пятерки кроме этих двух или же не могут? Если не могут, то это нелепо; если же могут, то какая именно десятка будет состоять из них? Ведь в десятке нет другой десятки, кроме нее самой. Но вместе с тем [для них] необходимо и то, чтобы четверка слагалась не из случайных двоек, ибо неопределенная двоица, по их мнению, восприняв определенную двойку, создала две двойки, так как она была удвоительницей того, что восприняла.

Далее, как это возможно, чтобы двойка [-эйдос] была чем-то самосущим помимо своих двух единиц и тройка - помимо своих трех единиц? Ведь либо одно будет причастно другому, подобно тому как "бледный человек" существует помимо "бледного" и "человека" (он причастен и тому и другому), либо [указанное различие будет иметься], поскольку одно есть некоторое видовое отличие другого, как, например, "человек" помимо "живого существа" и "двуногого".

Кроме того, одни вещи образуют единое через соприкосновение, другие - через смешение, третьи - положением [в пространстве]; [между тем] ничего такого не может быть у единиц, из которых состоят [принадлежащие к эйдосам] двойка и тройка; но так же как два человека не есть что-то одно помимо обоих, так с необходимостью и единицы. И оттого, что единицы неделимы, не создается различия между ними: ведь и точки неделимы, однако же пара точек ничего другого не представляет собой, кроме двух точек.

Так же не должно остаться незамеченным и то, что при таком взгляде приходится принимать предшествующие и последующие двойки, и таким же образом и у остальных чисел. В самом деле, допустим, что двойки, входящие в четверку, сосуществуют, но они предшествуют тем двойкам, которые входят в восьмерку; и как двойка породила их, так и они породили те четверки, которые входят в самое-по-себе-восьмерку; так что если первая двойка - идея, то и эти двойки будут некоторыми идеями То же можно сказать и о единицах. А именно: единицы, которые входят в первую двойку, порождают те четыре единицы, которые входят в четверку, так что все единицы оказываются идеями, и идея будет составляться из идей. Поэтому ясно, что и то, идеями чего им случается быть, будет составным, как, например, если сказать, что живые существа составляются из живых существ, если существуют их идеи.

И вообще проводить каким-то образом различие между единицами - это нелепость и вымысел (под вымыслом я разумею натяжку в предположении). В самом деле, мы не видим, чтобы единица отличалась от единицы по количеству или по качеству, и необходимо, чтобы одно число было либо равным, либо неравным [другому числу],-как всякое [вообще], так и особенно состоящее из отвлеченных единиц, так что если оно не больше и не меньше [другого], то оно равно [ему]. Мы предполагаем, что равное и вообще неразличимое в числах - одно и то же. Если же это не так, то даже двойки, входящие в самое-по-себе-десятку, не будут неразличимыми, хотя они и равны между собой, ибо, говоря об их неразличимости, какую [особую] причину можно было бы указать для этого?

Далее, если всякая единица составляет вместе со всякой другой единицей две, то единица из самой-по-себе-двойки и единица из самой-по-себе-тройки составят вместе двойку из различающихся между собой единиц; [спрашивается], будет ли эта двойка предшествующей или последующей по отношению к тройке? По-видимому, более необходимо, чтобы она предшествовала. Ведь одна из ее единиц была вместе с тройкой, а другая - вместе с двойкой. И мы со своей стороны предполагаем, что вообще одно и одно, равны они или неравны, составляют два, например: благо и зло, человек и лошадь; а те, кто придерживается указанных взглядов, утверждают, что и две единицы не составляют два.

Равным образом странно, если сама-по-себе-тройка не есть большее число, чем сама-по-себе-двойка; если же оно большее число, то ясно, что в нем содержится и число, равное двойке, а значит, это последнее неотличимо от самой-по-себе-двойки. Но это невозможно, если есть какое-то первое и второе число . И в таком случае идеи не могут быть числами. В этом-то отношении правы те, кто требует, чтобы единицы были различными, если должны быть идеи, как это было раньше указано ; в самом деле, эйдос [всегда] лишь один, между тем если единицы неразличимы, то и двойки и тройки также не будут различаться между собой. Поэтому им и приходится утверждать, что счет ведется так: один, два [и так далее] без прибавления чего-то к тому, что уже имеется налицо (иначе не было бы возникновения из неопределенной двоицы, и число не могло бы быть идеей: ведь в таком случае одна идея содержалась бы в другой и все эйдосы были бы частями одного эйдоса). Таким образом, в соответствии со своим предположением они говорят правильно, а вообще-то неправильно: в

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121