Библиотека >> Физика и философия
Скачать 101.21 Кбайт Физика и философия
Позднее исследования Борна, Иордана и Дирака показали, что матрицы, представляющие координаты и импульс электрона, не коммутируют друг с другом. На языке математики этот факт указывал на самое сильное из существенных различий между квантовой механикой и классической механикой.
Другое направление исходило из идей де Бройля о волнах материи. Шредингер попытался записать волновое уравнение для стационарных волн де Бройля, окружающих атомное ядро. В начале 1926 года ему удалось вывести значения энергии для стационарных состояний атома водорода в качестве собственных значений своего волнового уравнения, и он сумел дать общее правило преобразования данных классических уравнений в соответствующие волновые уравнения, которые, правда, относятся к некоторому абстрактному математическому пространству, именно многомерному конфигурационному пространству. Позднее он показал, что его волновая механика математически эквивалентна более раннему формализму квантовой или матричной механики. Таким образом, мы получили наконец непротиворечивый математический формализм, который можно выразить двумя равноправными способами: или с помощью матричных соотношений, или с помощью волновых уравнений. Этот математический формализм дал верные значения энергии для атома водорода. Понадобилось меньше года, чтобы обнаружить, что верные результаты получаются и для атома гелия и в более сложном случае - для тяжелых атомов. Однако собственно в каком смысле новый формализм описывает атомные явления? Ведь парадоксы корпускулярной и волновой картины еще не были решены, они только содержались в скрытом виде в математической схеме. В направлении действительного понимания квантовой теории первый и очень интересный шаг уже в 1924 году был сделан Бором, [16] Крамерсом и Слэтером3. Они попытались устранить кажущееся противоречие между волновой и корпускулярной картинами с помощью понятия волны вероятности. Электромагнитные световые волны толковались не как реальные волны, а как волны вероятности, интенсивность которых в каждой точке определяет, с какой вероятностью в данном месте может излучаться и поглощаться атомом квант света. Это представление вело к заключению, что, по-видимому, законы сохранения энергии и динамических переменных в каждом отдельном случае могут не выполняться и речь идет, следовательно, о статистических законах; так что энергия сохраняется только в статистическом среднем. В действительности этот вывод был неверен, а взаимосвязь волновой и корпускулярной картин излучения позднее оказалась еще более сложной. Однако работа Бора, Крамера и Слэтера содержала уже существенную черту верной интерпретации квантовой теории. С введением волны вероятности в теоретическую физику было введено совершенно новое понятие, В математике или статистической механике волна вероятности означает суждение о степени нашего знания фактической ситуации. Бросая кость, мы не можем проследить детали движения руки, определяющие выпадение кости, и поэтому говорим, что вероятность выпадения отдельного номера равно одной шестой, поскольку кость имеет шесть граней. Но волна вероятности, по Бору, Крамерсу и Слэтеру, была чем-то гораздо большим. Она означала нечто подобное стремлению к определенному протеканию событий. Она означала количественное выражение старого понятия "потенция" аристотелевской философии. Она ввела странный вид физической реальности, который находится приблизительно посредине между возможностью и действительностью. Позднее, когда было закончено математическое оформление квантовой теории, Борн использовал эту идею волны вероятности и дал на языке формализма ясное определение математической величины, которую можно интерпретировать как волну вероятности. Волна вероятности являлась не трехмерной волной типа радиоволн или упругих волн, а волной в многомерном конфигурационном пространстве. Эта абстрактная математическая величина стала известной благодаря исследованиям Шредингера. Даже в это время, летом 1926 года, еще не в каждом случае было ясно, как следует использовать математический формализм, чтобы дать описание данной экспериментальной ситуации. Правда, тогда уже знали, как описывать стационарные состояния, но не было еще известно, как объяснить гораздо более простые явления, например движение электрона в камере Вильсона. Когда летом 1926 года Шредингер показал, что формализм его волновой механики математически эквивалентен квантовой механике, он в течение некоторого времени совсем отказывался от представления о квантах и квантовых скачках и пытался заменить электроны в атоме трехмерными волнами материи. Поводом к такой попытке было то, что, по его теории, уровни энергии атома водорода являются [17] собственными частотами некоторых стационарных волн. Поэтому Шредингер полагал, что будет ошибкой считать их значениями энергии; они являются частотами, а вовсе не энергией; однако во время дискуссии, которая происходила в Копенгагене осенью 1926 года между Бором и Шредингером и копенгагенской группой физиков, стало очевидным, что такая интерпретация недостаточна даже для объяснения планковского закона теплового излучения 4. | ||
|