Библиотека >> Физика и философия

Скачать 101.21 Кбайт
Физика и философия

Он объяснял, что чувствует - либо он сделал открытие первого ранга, быть может, сравнимое только с открытиями Ньютона, либо он полностью ошибается. В это же время Планку стало ясно, что его формула затрагивает самые основы описания природы, что эти основы претерпят серьезное изменение и изменят свою традиционную форму на совершенно неизвестную. Планк, будучи консервативным по своим взглядам, вовсе не был обрадован этими выводами. Однако в декабре 1900 года он опубликовал свою квантовую гипотезу.

Мысль о том, что энергия может испускаться и поглощаться лишь дискретными квантами энергии, была столь новой, что она выходила за традиционные рамки физики. Оказалась напрасной в существенных чертах попытка Планка примирить новую гипотезу со старыми представлениями об излучении. Прошло около пяти лет, прежде чем в этом направлении был сделан следующий шаг.

На этот раз именно молодой Альберт Эйнштейн, революционный гений среди физиков, не побоялся отойти еще дальше от старых понятий. Эйнштейн нашел две новые проблемы, в которых он успешно применил представления Планка. Первой проблемой был проблема фотоэлектрического эффекта: выбивание из металла электронов под действием света. Опыты, особенно точно произведенные Ленардом, показали, что энергия испускаемых электронов зависит не от интенсивности света, а только от цвета или, точнее говоря, от частоты, или длины волны света. На базе прежней теории излучения это объяснить было нельзя. Однако Эйнштейн объяснил данные наблюдений, опираясь на гипотезу Планка, которую он интерпретировал с помощью предположения, что свет состоит из так называемых световых квантов, то есть из квантов энергии, которые движутся в пространстве подобно маленьким корпускулам. Энергия отдельного светового кванта, в согласии с гипотезой Планка, должна равняться частоте света, помноженной на постоянную Планка.

Другой проблемой была проблема удельной теплоемкости твердых тел. Существовавшая теория удельной теплоемкости приводила к величинам, которые хорошо согласовывались с экспериментом в области высоких температур, но при низких температурах были много выше наблюдаемых величин. Эйнштейн снова сумел показать, что подобное поведение твердых тел можно понять благодаря квантовой гипотезе Планка, применяя ее к упругим колебаниям атомов в твердом теле. Эти два результата были большим шагом вперед на

[11]

пути дальнейшего развития новой теории, в силу того что они обнаружили планковскую постоянную действия в различных областях, непосредственно не связанных с проблемой теплового излучения. Эти результаты выявили и глубоко революционный характер новой гипотезы, ибо трактовка Эйнштейном квантовой теории привела к такому объяснению природы света, которое полностью отличалось от привычного со времени Гюйгенса объяснения на основе волнового представления. Следовательно, свет может быть объяснен или как распространение электромагнитных волн - факт, который принимали на основе работ Максвелла и опытов Герца, - или как нечто, состоящее из отдельных "световых квантов", или "энергетических пакетов", которые с большой скоростью движутся в пространстве. А может ли свет быть и тем и другим? Эйнштейн, конечно, знал, что известные опыты по дифракции и интерференции могут быть объяснены только на основе волновых представлений. Он также не мог оспаривать наличие полного противоречия между своей гипотезой световых квантов и волновыми представлениями. Эйнштейн даже не пытался устранить внутренние противоречия своей интерпретации. Он принял противоречия как нечто такое, что, вероятно, может быть понято много позднее благодаря совершенно новому методу мышления.

Тем временем эксперименты Беккереля, Кюри и Резерфорда привели к несколько большей ясности в отношении строения атома. В 1911 году Резерфорд на основании наблюдений прохождения б-лучей через вещество предложил свою знаменитую модель атома. Атом состоит из атомного ядра, положительно заряженного и содержащего почти всю массу атома, и электронов, которые движутся вокруг ядра, подобно тому как планеты движутся вокруг Солнца. Химическая связь между атомами различных элементов объясняется взаимодействием между внешними электронами соседних атомов. Химическая связь непосредственно не имеет отношения к ядру. Атомное ядро определяет химические свойства атома лишь косвенно через свой электрический заряд, так как последний определяет число электронов в нейтральном атоме. Эта модель, правда, не могла объяснить одну из самых характерных черт атома, а именно его удивительную устойчивость. Никакая планетная система, которая подчиняется законам механики Ньютона, никогда после столкновения с другой подобной системой не возвратится в свое исходное состояние. В то время как, например, атом углерода остается атомом углерода и после столкновения с другими атомами или после того, как он, вступив во взаимодействие с другими атомами, образовал химическое соединение.

Объяснение этой необычной устойчивости было дано в 1913 году Нильсом Бором путем применения квантовой гипотезы Планка к модели атома Резерфорда.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62