Библиотека >> Новый рационализм

Скачать 258.28 Кбайт
Новый рационализм

Слишком просто без конца повторять, что математик не знает, о чем он говорит, в действительности он притворяется, что он об этом ничего не знает, он должен говорить, как будто он этого не знает, сдерживая свое воображение и подгоняя опыт. Евклидов подход остается наивным мышлением, которое всегда будет использовано в качестве основы для генерализации. “Весьма примечательно, — пишет А. Буль, — что достаточно слегка углубить некоторые аспекты евклидовой геометрии, чтобы увидеть возникновение другой геометрии и даже возникновение намного более общих геометрий”13. Будучи рассмотрено в этой перспективе обобщений, геометрическое мышление предстает как тенденция к полноте. Именно в полноте находит оно связность и знак законченной объективации.

Аксиоматический эпюр, составляющий подоснову геометрической мысли, опирается в свою очередь на более глубокое основание, являющееся исходной базой психологии математического мышления. Эта база — идея группы. Всякая геометрия — и, вне сомнения, вообще всякая математическая организация опыта — характеризуется особой группой преобразований. Новый довод в пользу тезиса, что математический объект определен посредством критериев, имеющих отношение к преобразованиям. Когда мы рассматриваем, например, евклидову геометрию, то перед нами особенно ясная и простая группа; может быть, настолько простая, что мы даже не замечаем сразу ее теоретической и экспериментальной значимости. Эта группа, как известно, группа перестановок. С ее помощью определяется равенство двух фигур, лежащее в основе метрической геометрии: две фигуры считаются равными, если после наложения они совпадут. Очевидно, что две следующие друг за другом операции перестановки могут быть заменены одной, представляющей производную от двух первых; любая серия любых перестановок может быть также при этом заменена одной-единственной. Такова причина того, что перестановки образуют группу.

Однако является ли эта истина опытной или рациональной? Не поразительно ли, что можно ставить перед собой такой вопрос и таким образом помещать идею группы в центр диалектического взаимодействия разума и опыта? В самом деле, есть довод в пользу того, что идея группы или, точнее, идея совокупности объединенных в группу операций отныне представляется общей основой физического опыта и рационального исследования. Математическая физика, встроив в свое основание понятие группы, отмечена превалированием рационального начала. Следует понять это, размышляя о структуре той первой математической физики, каковой является евклидова геометрия. Как верно сказал Жювэ: “Опыт показывает... что эти перестановки не изменяют геометрических фигур, но аксиоматика доказывает это фундаментальное положение”14. Доказательство важнее констатации.

Пока группа не связана с определенной аксиоматикой, нет уверенности, что последняя действительно представляет собой полный список постулатов. “Если некая группа представлена геометрией, ее аксиоматика непротиворечива в той мере, в какой не оспариваются теоремы Анализа. С другой стороны, аксиоматика некоторой геометрии будет полной лишь тогда, когда она действительно выступает как точное представление некоторой группы; коль скоро не найдена группа, которая является ее рациональной основой, эта аксиоматика неполна или, быть может, даже противоречива”15. Иначе говоря, группа представляет замкнутой математической системе доводы в пользу самой этой системы. Ее открытие приносит конец эре конвенций, более или менее независимых друг от друга, более или менее связанных друг с другом.

Физические инварианты, опирающиеся на структуру групп, придают, на наш взгляд, рациональное, а отнюдь не реалистское значение принципу преемственности, обнаруженному Э. Мейерсоном в основе физических явлений. Во всяком случае, именно здесь математизация реального в самом деле оказывается оправданной и образует процесс органической преемственности, на что указывал еще Жювэ: “В бурном потоке явлений, в постоянно меняющейся реальности физик усматривает преемственные связи; чтобы описать их, его ум конструирует геометрические структуры, разные формы кинематики, механические модели, аксиоматизация которых имеет целью уточнить... то, что за неимением подходящего термина мы назовем полезным пониманием различных понятий, формирование которых было связано с опытом и наблюдением. Если построенная таким образом аксиоматика есть представление группы, инварианты которой годятся для перевода, в реальность преемственностей, которые опыту предстоит открыть, то физическая теория свободна от противоречий и представляет собой образ реальности”16. Жювэ сближает соображения относительно групп с исследованиями Кюри относительно симметрий. Он заключает: здесь сразу перед нами и метод и экспликация.

III
Итак, абстрактные схемы — производные от аксиоматик и соответствующих групп — определяют структуру различных областей математической физики, и нужно вновь подняться до уровня групп, чтобы увидеть четко те отношения, в которых находятся друг к другу эти области математической физики. В частности, отдавать преимущество евклидовой геометрии здесь не более оправданно, чем отдавать преимущество группе перестановок.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142