Библиотека >> Структура научных революций
Скачать 192.99 Кбайт Структура научных революций
д., не могли обнаружить постоянной зависимости или даже простой регулярности.) Но конструкция его прибора в свою очередь зависела от предварительного признания того, что каждая частичка электрического флюида воздействует на другую на расстоянии. Кулон искал именно такую силу взаимодействия между частицами, которую можно было бы легко представить как простую функцию от расстояния6. Эксперименты Джоуля также можно использовать для иллюстрации того, как количественные законы возникают благодаря разработке парадигмы. Фактически между качественной парадигмой и количественным законом существует столь общая и тесная связь, что после Галилея такие законы часто верно угадывались с помощью парадигмы за много лет до того, как были созданы приборы для их экспериментального обнаружения7.
Наконец, имеется третий вид эксперимента, который нацелен на разработку парадигмы. Этот вид эксперимента более всех других похож на исследование. Особенно он преобладает в те периоды, когда в большей степени рассматриваются качественные, нежели количественные аспекты природных закономерностей, притом в тех науках, которые интересуются в первую очередь качественными законами. Часто парадигма, развитая для одной категории явлений, ставится под сомнение при рассмотрении другой категории явлений, тесно связанной с первой. Тогда возникает необходимость в экспериментах для того, чтобы среди альтернативных способов применения парадигмы выбрать путь к новой области научных интересов. Например, тепловая теория использовалась в качестве парадигмы в изучении процессов нагревания и охлаждения при смешивании и при изменении состояния. Но теплота может излучаться и поглощаться и во многих других случаях — например, при химическом соединении, при трении, благодаря сжатию или поглощению газа, — и к каждому из этих явлений тепловую теорию можно приложить по-разному. Если бы вакуум, например, имел теплоемкость, то нагревание при сжатии можно было бы объяснить как результат смешивания газа с пустотой или изменением удельной теплоемкости газов при изменении давления. Кроме того, есть и многие другие возможности объяснения. Для тщательного исследования этих возможных способов и их дифференциации предпринималось множество экспериментов, причем все они исходили из парадигмального характера тепловой теории и использовали ее при разработке экспериментов и для интерпретации их результатов8. Как только был установлен факт нагревания при увеличении давления, все последующие эксперименты в этой области были подчинены тем самым парадигме. Если само явление установлено, то как еще можно было объяснить выбор данного эксперимента? Обратимся теперь к теоретическим проблемам нормальной науки, которые оказываются весьма близкими к тому кругу проблем, которые возникают в связи с наблюдением и экспериментом. Часть нормальной теоретической работы, хотя и довольно небольшая, состоит лишь в использовании существующей теории для предсказания фактов, имеющих значение сами по себе. Создание астрономических эфемерид, расчет характеристики линз, вычисление траектории радиоволн представляют собой примеры проблем подобного рода. Однако ученые, вообще говоря, смотрят на решение этих проблем как на поденную работу, предоставляя заниматься ею инженерам и техникам. Солидные научные журналы весьма редко помещают результаты подобных исследований. Зато те же журналы уделяют большое место обсуждению проблем, которые обычный читатель должен был бы, вероятно, расценить как простые тавтологии. Такие чисто теоретические разработки предпринимаются не потому, что информация, которую они дают, имеет собственную ценность, а потому, что они непосредственно смыкаются с экспериментом. Их цель заключается в том, чтобы найти новое применение парадигмы или сделать уже найденное применение более точным. Необходимость такого рода работы обусловлена огромными трудностями в применении теории к природе. Эти трудности можно кратко проиллюстрировать, обозревая путь, пройденный динамикой после Ньютона. В первые годы XVIII века те ученые, которые нашли парадигму в “Началах”, приняли общность ее выводов без доказательства, и они имели все основания так сделать. Ни одна другая работа в истории науки не испытала столь быстрого расширения области применения и такого резкого возрастания точности. Для изучения небесных явлений Ньютон использовал кеплеровские законы движения планет, а также точно объяснил наблюдаемые отклонения от этих законов в движении Луны. Для изучения движения нашей планеты он использовал результаты некоторых разрозненных наблюдений над колебаниями маятника, наблюдений приливов и отливов. С помощью дополнительных, но в известном смысле произвольных (ad hoc) допущений он умел также вывести закон Бойля и важную формулу для скорости звука в воздухе. При тогдашнем уровне развития науки успех его демонстраций был в высшей степени впечатляющим, хотя, учитывая предполагаемую общность законов Ньютона, следует признать, что число этих приложений было сравнительно невелико и что Ньютон не смог добавить к ним почти никаких других. Более того, если сравнивать все это с тем, чего может достигнуть в наше время любой аспирант-физик с помощью тех же самых законов, то окажется, что даже указанные Ньютоном несколько конкретных применений его законов не были разработаны с должной точностью. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
| ||
|