Библиотека >> Кризис европейских наук и трансцендентальная феноменология
Скачать 49.75 Кбайт Кризис европейских наук и трансцендентальная феноменология
Прогресс включает в себя непрерывное совершенствование, а для естествознания, взятого в целом, характерно то, что оно все более и более возвращается к самому себе, к своему "предельному" истинному бытию, что оно дает все лучшее и лучшее "представление" о том, что же такое "истинная природа". Но истинная природа заключена не в бесконечности прямой линии, а подобно бесконечно далекому полюсу- в бесконечности теорий и мыслима лишь как проверка; она, следовательно, соотносима лишь с бесконечным историческим процессом аппроксимации. Этот процесс может стать предметом философской мысли, но в таком случае возникают вопросы, которые не могут быть здесь разрешены и которые выходят за рамки исследования. Ведь здесь речь идет о том, чтобы достичь полной ясности относительно идеи и задачи физики, которая, возникнув в галилеевской форме, определяла философию нового времени, понять физику в ее движущих причинах, уяснить то, что входило в ее мотивы, как что-то по традиции само собой разумеющееся, выявить то, какие смысловые предпосылки остались непроясненными или вскрыть то, какой специфический смысл скрыт за тем, что же считается само собой разумеющимся.
Поэтому необходимо более конкретно описать первые шаги физики Галилея и формирования ее методов. f) Проблема смысла естественнонаучных "формул" Одно важно для нашего объяснения. Решающей процедурой, которая в соответствии с общим смыслом естественнонаучного метода делает возможным систематически упорядоченные и вполне определенные предсказания в сфере непосредственно чувственного опыта и всего возможного опытного знания, выходящего за пределы преднаучного жизненного мира, является действительное упорядочивание математических идеальных сущностей, вначале введенных в гипотезу как что-то неопределенно всеобщее, а затем уже как всеобщее в своей определенности. И если эта процедура сохраняет свой изначальный смысл, то необходимо тематизировать этот смысл для того, чтобы постичь прогрессирующую последовательность актов созерцания (отныне рассматриваемых как аппроксимации), указывающих на функциональную координацию качеств, короче говоря, на формулы. Иными словами, следуя этим формулам, сделать эту последовательность актуальной. Это же относится и к самой координации, которая выражается в функциональных формулах, позволяя предсказывать ожидаемые эмпирические регулярности, характерные для практического жизненного мира. Иными словами, если найдены формулы, то уже заранее предполагается практически желаемое предсказание того, что предположено с эмпирической достоверностью в созерцаемом мире конкретной действительной жизни, где математика - это лишь специальная форма практики. Математизация, реализующаяся в формулах, оказывается процедурой, решающей для жизни. Из этого рассуждения становится ясным, что с самых первых шагов формирования концепции и построения метода естествоиспытатель обнаруживает глубокий интерес к решающему, основному звену отмеченной выше процедуры - к формулам и с помощью "естественнонаучных методов", "метода истинного познания природы" и всей совокупности весьма искусных методов получает их, делая логически обязательными для каждого человека. Опять-таки, понятно, что было бы ошибочным искать в этих формулах и в их смысле истинное бытие самой природы. Теперь более внимательно следует рассмотреть "смысл этих формул", а именно объективацию смысла (Sinnverau/?erlichung), неизбежно осуществляющуюся вместе с формированием и использованием метода. Измерения ведут к числовым мерам, а в общих высказываниях о функциональной зависимости величин вместо определенных чисел используются числа вообще, превращаясь во всеобщие высказывания, которые выражают законы функциональной зависимости. Здесь необходимо обратить внимание на мощное влияние - с одной стороны, благотворное, с другой - губительное - алгебраических обозначений и способов мышления, получившие в новое время широкое распространение с работ Виета, т.е. еще до Галилея. Прежде всего это означает невиданное расширение возможностей арифметического способа мышления, передаваемого из поколения в поколение в старых, примитивных формах. Возникло свободное, систематическое, априорное мышление, полностью свободное от всякой связи с чувственно воспринимаемой действительностью, размышление о числах вообще, числовых отношениях, числовых законах. Поскольку этот способ мышления получил распространение в геометрии, во всей чистой математике ^пространственно-временных форм, постольку геометрия получила методическую алгебраическую формализацию. Так сформировалась программа "арифметизации геометрии", "арифметизации всего царства чистых форм" (идеальных прямых, окружностей, треугольников, движений, позиционных отношений и т.д.). Они мыслятся идеальными и точными в той мере, в какой измеримыми, коль скоро единицы измерения, сами по себе идеальные, обретают смысл пространственно-временных величин. Арифметизация геометрии приводит определенным образом к опустошению ев смысла. Действительные пространственно- временные идеальные сущности, впервые представленные в геометрическом способе мышления под общим названием "чистые интуиции", превратились, так сказать, в чистые числовые формы, в алгебраические образования. | ||
|