Библиотека >> С чем идет современная логика в XXI век?

Скачать 19.02 Кбайт
С чем идет современная логика в XXI век?

И такие "диверсии" (или мемы) размножаются в разных областях знаний, если не в геометрической, то, по крайней мере, в арифметической прогрессии.

Одним из разрушительных последствий этой "диверсии" стала все возрастающая неустойчивость многих математических понятий — многие исторически сложившиеся и строго определенные математические термины коренным образом меняют свое значение в зависимости от приверженности к определенной научной школе. И это относится не только к сугубо специальным терминам, но и к таким, которые лежат в основе современной математики. Перечислю лишь некоторые из них: "отношение", "соответствие", "отображение", "декартово произведение множеств", "алгебраическая система". Речь в данном случае идет не просто о разных подходах к определению этих терминов, а о том, что в разных авторитетных источниках этим терминам соответствуют принципиально различные математические структуры. Поневоле приходишь к выводу, что интенсивная дифференциация математики обусловлена в основном не детализацией и расширением ее разделов, а искусственно создаваемыми терминологическими барьерами между различными научными школами.

Сейчас в рамках искусственного интеллекта идет интенсивная компьютеризация знаний, которая к тому же сопровождается многочисленными рекламными заверениями в том, что компьютерная логика более точна, чем наша обычная человеческая логика. Но если в компьютер заложить ложные или противоречивые знания и не сформулировать точных условий ложности или противоречивости, то компьютер вряд ли распознает эту ошибку. Например, в арифметических операциях компьютер не делит число на нуль не потому, что он знает, что такое деление некорректно, а потому, что в его арифметико-логическом блоке встроена инструкция, запрещающая такое деление. Чтобы смоделировать на компьютере двусмысленную ситуацию с отношением принадлежности, достаточно ввести в его память два класса объектов: "множества" и "элементы" и сформировать из них структуру (матрицу), в которой задано отношение между этими объектами. С точки зрения "логики" самого компьютера совершено неважно, содержит ли эта матрица направленные связи только между парами типа "элемент – множество" или же в эту матрицу добавлены некоторые связи между парами типа "множество – множество". Ведь структурные свойства отношения принадлежности компьютеру не заданы, поскольку эти свойства пока что не определили однозначно и точно сами люди.

4. Проблемы, связанные с математическим подходом к анализу рассуждений

Напрашивается достаточно простой выход из этого затянувшегося кризиса: в основу логики классов (или множеств) нужно заложить не отношение принадлежности, а отношение включения, основные структурные свойства которого в настоящее время хорошо исследованы и однозначно определены в математике. Однако такой подход почему-то не привлек внимания современных логиков и начал исследоваться лишь несколько лет назад автором данной статьи [11-19]. Разумеется, использование отношения включения при моделировании и анализе естественных рассуждений отнюдь не означает, что отношение принадлежности должно быть изъято из математики. Но это отношение нуждается в более строгом определении. В соответствии с программой Гильберта отношение принадлежности относится к "первичным" (т.е. неопределяемым) понятиям. Но эта "первичность" не более как голословное утверждение, ибо в рамках этой же программы данное отношение уже "скрыто" определено специалистами по основаниям математики достаточно четко как двусмысленное понятие.

Еще одной трудной проблемой, связанной с моделированием и анализом естественных рассуждений, является ответ на вопрос: возможно ли в принципе математическое обоснование логики естественных рассуждений? На первый взгляд, эта проблема кажется неразрешимой. Принято считать, что математика оперирует понятиями и символами, которые имеют строгое определение и смысл которых является фиксированным по крайней мере в рамках какого-то определенного раздела математики. В настоящее время можно найти немало конкретных публикаций по математике и логике, где это правило нарушается. Во многом это обусловлено упомянутой выше "логической диверсией", внедрившейся в математику в начале XX века. Но в целом это правило все же является эталоном математики. В то же время в естественном языке нередко одни и те же слова или сочетания слов даже в разных местах одного и того же краткого текста могут иметь разный, а иногда и существенно несопоставимый смысл. В естественном языке вполне уместны и даже неизбежны такие "нелогические" явления как омонимия, полисемия, тропы, метафоры и т.д., которые принято объединять термином "полиморфизм языка". Как же в этом случае можно для логического анализа рассуждений на естественном языке использовать математику с ее прямолинейностью и однозначностью?

Однако при такой постановке проблемы смешиваются два принципиально разных понятия: язык "вообще" с его неизбежным "полиморфизмом" и сравнительно короткие отрезки текстов, которые по некоторым признакам можно отнести к классу рассуждений и обоснований.

Страницы:  1  2  3  4  5  6  7  8  9  10  11