Библиотека >> Философия логического атомизма.

Скачать 170.93 Кбайт
Философия логического атомизма.

Я хочу, чтобы вы брали слова может  рассматриваться в строгом смысле. Я использую их вместо является, поскольку является было бы неверным. 'Экстенсиональные' высказывания о функциях суть те, что остаются истинными, когда вы подставляете любую другую формально эквивалентную  функцию, и они суть те, что могут рассматриваться как относящиеся к классам. Если у вас имеется любое высказывание о функции, которое не является экстенсиональным, вы всегда можете образовать из него нечто подобное высказыванию, которое является экстенсиональным, а именно, существует функция, формально эквивалентная рассматриваемой, относительно которой рассматриваемое высказывание является истинным. Это высказывание, искусственно образованное из того, с которого вы начинали, будет экстенсиональным. Оно всегда будет одинаково истинным или одинаково ложным для любых двух формально эквивалентных функций, и это производное экстенсиональное высказывание можег рассматриваться как соответствующее высказывание о связанном с ним классе. Так, когда я говорю, что 'Класс людей имеет такое-то количество членов', это означает: 'Существует такое-то количество людей в мире', последнее будет производно от высказывания, что 'х - человек' удовлетворяется таким-то количеством значений х, и для того, чтобы получить его в экстенсиональной форме, его полагают таким способом, что 'Существует функция формально эквивалентная функции "х - человек", которая является истинной для такого-то количества значений' х'. Последнее я бы определил как то, что имею в виду, говоря: 'Класс людей имеет такое-то количество членов'. Этим способом вы находите, что все формальные свойства, которые вам хотелось бы видеть у классов, все их формальные употребления в математике, могут быть получены без предположения, так сказать, что пропозиция, в которую символически входит класс, действительно содержит конституенту, соответствующую этому символу, и будучи правильно проанализированным, этот символ исчезнет тем же самым способом, как исчезают дескрипции, когда правильно проанализированы пропозиции, в которые они входят. При более обычном взгляде на классы имеются определённые трудности вдобавок к уже упомянутым нами, и которые разрешаются нашей теорией. Одна из них связана с нулевым классом, т.е. с классом, не имеющим  членов, который трудно рассматривать на чисто экстенсиональной основе. Другая связана с единичным классом. С обычной точки зрения на классы, вы сказали бы, что класс, который имеет только один член, совпадал бы с самим этим членом. Последнее привело бы вас к страшным затруднениям, поскольку в данном случае этот один член является членом данного класса, а именно, самого себя. Возьмём, например, класс 'слушателей лекции в Гордон Сквер'. Очевидно, это класс классов и вероятно, это класс, имеющий только один член, и сам этот один член (до сих пор) содержит более одного члена. Стало быть, если бы вы должны были отождествить класс слушателей лекции в Гордон Сквер  с единственным слушателем, имеющимся в Гордон Сквер, вам  нужно было бы говорить как о том, что он имеет один член, так и о том, что он имеет двадцать членов, и вы впали бы в противоречие, поскольку этот слушатель имеет более одного члена, но класс слушателей в Гордон Сквер имеет только один член. Вообще говоря, если у вас имеется любое собрание многих объектов, образующих  класс, вы в состоянии сформировать класс, у которого данный  класс будет единственным членом, и класс, у которого данный  класс является единственным членом, будет иметь только один  член, хотя этот единственный член и будет содержать многочленов. Это одна из причин, почему вы должны отличать единичный  класс от его единственного члена. Другая заключается в том, что если вы так не сделаете, то обнаружите, что класс является членом самого себя, а это вызывает возражение, как мы видели в данной лекции ранее. Я включил тонкости, связанные с тем фактом, что две формально эквивалентные функции могут быть различных  типов. О  способах трактовки этого вопроса смотрите lang=EN-US>Principia Mathematica, стр.20 и введение, раздел Ш.    Я вовсе не сказал всего, что должен был сказать на этот счёт. Я намеревался углубиться в теорию типов немного далее. Теория типов на самом деле является теорией символов, а не вещей. В надлежащем логическом языке она была бы совершенно очевидной. Существующие  неприятности вырастают из закоренелой привычки пытаться именовать то, что не может быть наименовано. Если бы у вас был надлежащий логический язык, вы бы не пытались этого делать. Строго говоря, наименованными могут быть только индивиды. В том смысле, в котором индивиды существуют, вы не в состоянии сказать истинно либо ложно, что существует что-то ещё. Слово 'существует' - это слово, обладающее 'систематической двусмысленностью', т.е. обладающее строго бесконечным числом разных значений, которые важно различать.

                          Дискуссия

   Вопрос: Можете ли вы рассматривать все эти классы, классы классов и т.д. как единое целое?    М-р Рассел: Всё это фикции, но в каждом случае различные фикции.


Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100