Библиотека >> Мир как воля и представление
Скачать 403.34 Кбайт Мир как воля и представление
Всякая продолжительная, связная, планомерная деятельность должна поэтому исходить из основных принципов, т.е. из абстрактного знания, и ими руководствоваться.
Так, например, познание, имеющееся у рассудка об отношении между причиной и действием, само по себе гораздо совершеннее, глубже и содержательнее, чем то, что можно мыслить об этом in abstracto: только рассудок познает наглядно, непосредственно и совершенно, как действует рычаг, палиспаст, шестерня, как сам собою держится свод и т.д. Но вследствие только что затронутого свойства интуитивного познания – обращаться лишь к непосредственно данному, одного рассудка недостаточно для построения машин и зданий; здесь должен приняться за дело разум, заменить созерцания абстрактными понятиями, сделать их путеводной нитью в своей деятельности, и если они верны, то успех обеспечен. Точно так же в чистом созерцании мы в совершенстве познаем сущность и закономерность параболы, гиперболы, спирали, но чтобы сделать из этого познания верное приложение к действительности, его необходимо сначала превратить в абстрактное знание. При этом хотя оно и потеряет наглядность, но приобретает зато достоверность и определенность абстрактного знания. Таким образом, все дифференциальное исчисление не расширяет, собственно, нашего знания о кривых, не содержит ничего сверх того, что уже было в чистом созерцании их; но оно изменяет характер познания, превращая интуитивное в абстрактное, что оказывается необычайно плодотворным в применении. Здесь, однако, необходимо упомянуть еще об одном свойстве нашей познавательной способности, – его не могли заметить до тех пор, пока не было вполне уяснено различие между наглядным и абстрактным познанием. Свойство это заключается в том, что отношения пространства как таковые нельзя непосредственно перенести в абстрактное познание, но для этого пригодны только временные величины, т.е. числа. Только числа могут быть выражены в точно соответствующих им абстрактных понятиях, но не пространственные величины. Понятие тысячи так же отличается от понятия десяти, как обе временные величины отличаются в созерцании; в тысяче мы мыслим число, в определенное количество раз большее десяти, и мы можем для созерцания во времени произвольно разложить эту тысячу на десятки, т.е. счесть ее. Но между абстрактными понятиями мили и фута, без наглядного представления о них и без помощи числа не существует точного различия, соответствующего самим этим величинам. В обоих понятиях мыслится только пространственная величина вообще, и для того чтобы достаточно различить их, необходимо либо призвать на помощь пространственное созерцание, т.е. покинуть уже область абстрактного познания, либо же помыслить это различие в числах. Таким образом, если мы хотим иметь абстрактное знание о пространственных отношениях, то их нужно перенести сначала во временные отношения, т.е. в числа. Поэтому только арифметика, а не геометрия является общей наукой о величинах, и геометрия должна быть переведена в арифметику, если ее хотят сделать удобной для изложения другим и сообщить ей точную определенность и приложимость на практике. Правда, и пространственное отношение как таковое можно мыслить in abstracto, – то, например, что синус увеличивается соответственно углу; но если требуется указать величину этого отношения, необходимо число. Необходимость переводить пространство с его тремя измерениями во время, имеющее только одно измерение, если мы хотим иметь абстрактное познание (т.е. знание, а не просто созерцание) пространственных отношений, – эта необходимость и делает столь трудной математику. Это станет очень ясно, если сравнить созерцание кривых с аналитическим вычислением их, или хотя бы только таблицы логарифмов тригонометрических функций – с созерцанием изменяющихся отношений между частями треугольника, выражаемых этими таблицами. То, что созерцание вполне и с предельной точностью схватывает здесь с первого взгляда, например, как уменьшается косинус с увеличением синуса, как косинус одного угла является синусом другого, обратное соотношение между уменьшением и увеличением обоих углов и т.д., – все это потребовало бы огромной ткани чисел и утомительного вычисления, чтобы выразиться in abstracto. Можно сказать: какие муки должно вынести время со своим одним измерением, чтобы передать три измерения пространства! Между тем это необходимо, если мы хотим ради практических целей, чтобы пространственные отношения были фиксированы в абстрактных понятиях: первые могут выразиться в последних не непосредственно, а лишь через посредство чисто временной величины, числа, которое одно непосредственно пригодно для абстрактного познания. Замечательно еще и то, что, если пространство вполне подходит для созерцания и при помощи своих трех измерений позволяет легко обозреть даже сложные отношения, оказываясь, однако, недоступным для абстрактного познания, то время, наоборот, легко укладывается в отвлеченные понятия, Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
| ||
|