Библиотека >> Диалоги Платона

Скачать 1241.71 Кбайт
Диалоги Платона

И вот теперь он думает, будто знает, какие стороны образуют восьмифутовый квадрат. Или, по-твоему, это не так?

Менон. Так.

Сократ. Что же, знает он это?

Менон. Вовсе не знает!

Сократ. Но думает, что такой квадрат образуют вдвое увеличенные стороны?

Менон. Да.

Сократ. Теперь смотри, как он сейчас вспомнит одно за другим все, что следует вспомнить. [К мальчику.] А ты скажи мне вот что. По-твоему выходит, что, если удвоить стороны, получается удвоенный квадрат? Я имею в виду не такую фигуру, у которой одна сторона длинная, а другая короткая, а такую, у которой все четыре стороны равны, как у этой, но только удвоенную, восьмифутовую. Вот и посмотри: тебе все еще кажется, что ее образуют удвоенные стороны?

Раб. Да, кажется.

Сократ. А разве не выйдет у нас сторона вдвое больше этой, если мы, продолжив ее, добавим еще одну точно такую же?

Раб. Выйдет.

Сократ. Значит, по-твоему, если этих больших сторон будет четыре, то получится восьмифутовый квадрат?

Раб. Получится.

Сократ. Пририсуем-ка к этой еще три точно такие же стороны. Неужели, по-твоему, это и есть восьмифутовый квадрат?

Раб. Ну конечно.

Сократ. А разве не будет в нем четырех квадратов, каждый из которых равен этому, четырехфутовому?

Раб. Будет.

Сократ. Выходит, какой же он величины? Не в четыре ли раза он больше первого?

Раб. Как же иначе?

Сократ. Что же, он одновременно и в четыре, и в два раза больше первого?

Раб. Нет, клянусь Зевсом!

Сократ. Во сколько же раз он больше?

Раб. В четыре.

Сократ. Значит, благодаря удвоению сторон получается площадь не в два, а в четыре раза большая?

Раб. Твоя правда.

Сократ. А четырежды четыре – шестнадцать, не так ли?

Раб. Так.

Сократ. Из каких же сторон получается восьмифутовый квадрат? Ведь из таких вот получился квадрат, в четыре раза больший [четырехфутового]?

Раб. И я так говорю.

Сократ. А из сторон вдвое меньших – четырехфутовый?

Раб. Ну да.

Сократ. Ладно. А разве восьмифутовый не равен двум таким вот маленьким квадратам или половине этого большого квадрата?

Раб. Конечно, равен.

Сократ. Значит, стороны, из которых он получится, будут меньше этой большой стороны, но больше той маленькой.

Раб. Мне кажется, да.

Сократ. Очень хорошо; как тебе покажется, так и отвечай. Но скажи-ка мне: ведь в этой линии – два фута, а в этой – четыре, верно?

Раб. Верно.

Сократ. Значит, сторона восьмифутовой фигуры непременно должна быть больше двух и меньше четырех футов?

Раб. Непременно.

Сократ. А попробуй сказать, сколько в такой стороне, по-твоему, будет футов?

Раб. Три фута.

Сократ. Если она должна иметь три фута, то не надо ли нам прихватить половину вот этой [двухфутовой] стороны – тогда и выйдет три фута? Здесь – два фута, да отсюда один; и с другой стороны так же: здесь – два фута и один отсюда. Вот и получится фигура, о которой ты говоришь. Не так ли?

Раб. Так.

Сократ. Но если у нее одна сторона в три фута и другая тоже, не будет ли во всей фигуре трижды три фута?

Раб. Очевидно, так.

Сократ. А трижды три фута – это сколько?

Раб. Девять.

Сократ. А наш удвоенный квадрат сколько должен иметь футов, ты знаешь?

Раб. Восемь.

Сократ. Вот и не получился у нас из трехфутовых сторон восьмифутовый квадрат.

Раб. Не получился.

Сократ. Но из каких же получится? Попробуй сказать нам точно. И если не хочешь считать, то покажи.

Раб. Нет, Сократ, клянусь Зевсом, не знаю.

Сократ. Замечаешь, Менон, до каких пор он дошел уже в припоминании? Сперва он, так же как теперь, не знал, как велика сторона восьмифутового квадрата, но думал при этом, что знает, отвечал уверенно, так, словно знает, и ему даже в голову не приходила мысль о каком-нибудь затруднении. А сейчас он понимает, что это ему не под силу, и уж если не знает, то и думает, что не знает.

Менон. Твоя правда.

Сократ. И разве не лучше теперь обстоит у него дело с тем, чего он не знает?

Менон. По-моему, лучше.

Сократ. Так разве мы нанесли ему хоть какой-нибудь вред, запутав его и поразив оцепенением, словно скаты?

Менон. По-моему, ничуть.

Сократ. Значит, судя по всему, мы чем-то ему помогли разобраться, как обстоит дело? Ведь теперь, не зная, он с удовольствием станет искать ответа, а раньше он, беседуя с людьми, нередко мог с легкостью подумать, будто говорит правильно, утверждая, что удвоенный квадрат должен иметь стороны вдвое более длинные.

Менон. Да, похоже, что так.

Сократ. Что же, по-твоему, он, не зная, но думая, что знает, принялся бы искать или изучать это до того, как запутался, и, поняв, что не знает, захотел узнать?

Менон. По-моему, нет, Сократ.

Сократ. Значит, оцепенение ему на пользу?

Менон.

Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384  385  386  387  388  389  390  391  392  393  394  395  396  397  398  399  400  401  402  403  404  405  406  407  408  409  410  411  412  413  414  415  416  417  418  419  420  421  422  423  424  425  426  427  428  429  430  431  432  433  434  435  436  437  438  439  440  441  442  443  444  445  446  447  448  449  450  451  452  453  454  455  456  457  458  459  460  461  462  463  464  465  466  467  468  469  470  471  472  473  474  475  476  477  478  479  480  481  482  483  484  485  486  487  488  489  490  491  492  493  494  495  496  497  498  499  500  501  502  503  504  505  506  507  508  509  510  511  512  513  514  515  516  517  518  519  520  521  522  523  524  525  526  527  528  529  530  531  532  533  534  535  536  537  538  539  540  541  542  543  544  545  546  547  548  549  550  551  552  553  554  555  556  557  558  559  560  561  562  563  564  565  566  567  568  569  570  571  572  573  574  575  576  577  578  579  580  581  582  583  584  585  586  587  588  589  590  591  592  593  594  595  596  597  598  599  600  601  602  603  604  605  606  607  608  609  610  611  612  613  614  615  616  617  618  619  620  621  622  623  624  625  626  627  628  629  630  631  632  633  634  635  636  637  638  639  640  641  642  643  644  645  646  647  648  649  650  651  652  653  654  655  656  657  658  659  660  661  662  663  664  665  666  667  668  669  670  671  672  673  674  675  676  677  678  679  680  681  682  683  684  685  686  687  688  689  690  691  692  693  694  695  696  697  698  699  700  701  702  703  704  705  706  707  708  709  710  711  712  713  714