Библиотека >> К онтологии сознания через рефлексию
Скачать 164.78 Кбайт К онтологии сознания через рефлексию
Анализ истории развития систем "искусственного интеллекта", которую можно представить как "борьбу" тенденций "универсальности" и "конкретизации" систем ИИ, — позволяет говорить о "возрождении" тенденции "универсальности" систем ИИ в середине 80-ых годов и о начале качественно нового этапа развития систем ИИ, связанного с появлением обучающихся систем, для которого характерно широкое использование метауровневых средств. Выделяются две различные области применения метасредств: полные логические системы, в которых получить "новое" знание в силу их полноты невозможно, и неполные логические системы. Далее анализируется специфика использования метауровневых средств в каждой из этих областей. Уточняется цель исследования, которая заключается в анализе использования метасредств в полных логических системах. В этом случае метауровневые средства могут быть использованы для:
— разработки стратегии и тактики доказательств в логических исчислениях; — управления процессом построения вывода при решении задач с помощью ЭВМ; В первой главе ("От исчислений к интеллектуальным системам") ставится задача выработать методологический аппарат исследования "эвристической" компоненты логических исчислений и, на этой основе, выявить наиболее перспективные подходы повышения "эвристичности" исчислений. В первом параграфе ("Понятие интеллектуальной системы") на основе анализа понятия логической системы обосновывается необходимость развития "эвристической" компоненты логических систем для задачи поиска (построения) вывода и формулируется задача исследования: как возможно построение вывода в логических системах? Вводится базовое методологическое понятие интеллектуальной (логико-эвристической) системы, и выделяется тип интеллектуальных систем, в которых предусмотрены особые средства для организации процесса построения вывода, — исчисления поиска вывода. Формулируется, что изучение этих исчислений и составляет "предмет" новой научной дисциплины — теории поиска вывода. Введенное понятие логико-эвристической системы сравнивается с другими подходами к определению интеллектуальных систем и показывается его совместимость с подходами И.С. Ладенко, В.М. Сергеева, В.К. Финна. Во втором параграфе ("Анализ традиционных логических систем") выделяются два, существенных для теории поиска вывода, момента решения задач — анализ и синтез (Папп Александрийский). Формулируются понятия аналитического способа (способ решения "снизу вверх": от формулы к аксиомам) и синтетического способа (решение задачи "сверху вниз": от аксиом к выводимой формуле) построения выводов в логических исчислениях, что позволяет предложить классификацию логических исчислений по степени актуализации в них возможностей аналитического и синтетического подходов. Согласно этой классификации все логические системы можно разделить на "аналитические", "синтетические" и "смешанные". Эта классификация сравнивается с известным разделением всех логических систем на аксиоматические системы (системы гильбертовского типа), системы натурального вывода и секвенциальные исчисления и показывается "условное" совпадение "синтетических" исчислений — с аксиоматическими системами, "аналитических" исчислений — с секвенциальными системами, а "смешанных" исчислений — с системами натурального вывода. Далее обосновывается утверждение о том, что секвенциальные исчисления и системы натурального вывода представляют собой два возможных подхода к развитию "эвристической" компоненты исчислений. Для этого более подробно анализируются "положительные" особенности (для целей поиска вывода) натуральных и секвенциальных исчислений и выделяется важное направление "интеллектуализации", реализованное в этих исчислениях, — структурная специализация вывода, которая предполагает структурное представление выводов и наложение определенных ограничений на возможную форму (структуру) выводов, что связано с изменением понятия вывода. По сравнению со стандартным понятием вывода как линейной последовательности формул в "синтетических" исчислениях, в системах натурального вывода формулируется понятие "субординатного" вывода, а в секвенциях — понятие "дерева вывода" ("дерева поиска вывода"). Анализ особенностей логических исчислений позволили выделить другие "положительные" особенности исчислений для поиска вывода, среди которых можно отметить использование мощного правила подстановки в гильбертовских системах, использование допущений в системах натурального вывода, а также "потенциальные" возможности структурного представления вывода, заключенные в самой первой логической системе Г. Фреге. Для более точной характеристики эффективности использования правил в работе вводятся понятия "аналитического" и "не-аналитического" применения правила вывода, что позволяет уточнить классификацию логических исчислений и выделить среди них "чисто аналитические" исчисления (например, секвенциальные исчисления без правил сечения). В заключении параграфа дается общая характеристика аналитического подхода к построению выводов, выявляется ограниченность его использования в системах натурального вывода и секвенциальных исчислениях, что связано с локальностью использования аналитического подхода в этих исчислениях, и обосновывается необходимость преодоления этих ограничений с помощью двух взаимосвязанных идей: идеи глобальной обработки информации и метода метапеременных. Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
| ||
|